
TECHNICAL NOTE Open Access

Discovery, genotyping and characterization
of structural variation and novel sequence
at single nucleotide resolution from de
novo genome assemblies on a population
scale
Siyang Liu1,2†, Shujia Huang1,3†, Junhua Rao1†, Weijian Ye1†, The Genome Denmark Consortium2,
Anders Krogh2* and Jun Wang1,2*

Abstract

Background: Comprehensive recognition of genomic variation in one individual is important for understanding
disease and developing personalized medication and treatment. Many tools based on DNA re-sequencing exist for
identification of single nucleotide polymorphisms, small insertions and deletions (indels) as well as large deletions.
However, these approaches consistently display a substantial bias against the recovery of complex structural variants
and novel sequence in individual genomes and do not provide interpretation information such as the annotation of
ancestral state and formation mechanism.

Findings: We present a novel approach implemented in a single software package, AsmVar, to discover, genotype and
characterize different forms of structural variation and novel sequence from population-scale de novo genome
assemblies up to nucleotide resolution. Application of AsmVar to several human de novo genome assemblies
captures a wide spectrum of structural variants and novel sequences present in the human population in high
sensitivity and specificity.

Conclusions: Our method provides a direct solution for investigating structural variants and novel sequences
from de novo genome assemblies, facilitating the construction of population-scale pan-genomes. Our study
also highlights the usefulness of the de novo assembly strategy for definition of genome structure.
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Findings
Background
DNA sequencing technology is advancing so fast that we
are very close to being able to sequence whole human
genomes routinely. This ability is likely to revolutionize
diagnosis and treatment of many human diseases and
generally further our understanding of human biology.
An ideal DNA sequencing platform is one that provides

the continuous sequences of each of the chromosomes
in a genome and enables the identification of all se-
quence variants directly. However, owing to technical
limitations, the current methods for sequencing large ge-
nomes generate reads with lengths that are typically
smaller than 250 bp and with limited insert size, usually
less than 20 kbp [1]. The subsequent analysis of vari-
ation in a human individual generally starts from a re-
sequencing strategy, that is, a strategy based on the
short-read alignment to a consensus reference sequence
such as the Genome Reference Consortium human gen-
ome build 37 (GRCh37) [2, 3]. This approach has suffi-
cient sensitivity and specificity for discovering most of
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the single nucleotide polymorphisms (SNPs), small inser-
tions (typically less than one fourth of the read length)
and small deletions (typically less than half of the read
length) in the genome, as well as some large deletions in
non-repetitive sequences (for which short-read align-
ment is less challenging than that for repetitive se-
quences) [4, 5]. However, this approach is consistently
biased towards the identification of certain types of other
forms of variation such as large insertions, multiple nu-
cleotide polymorphisms (MNP), inversions, transloca-
tions and novel sequences and towards the breakpoint
resolutions [3, 6].
The sequence complexity of the structural variation

in individual genomes and the fact that the human gen-
ome reference sequence is imperfect introduces chal-
lenges for discovery using the re-sequencing approach
[7], despite the importance of those types of variation
in the definition of genome structure and disease aeti-
ology [8]. These limitations raise interest in taking an-
other direction in investigations of human genome
variation, in which we first assemble the genome and
subsequently discover the variants by analysis of the
assembly-versus-assembly alignment [7]. An assembly
encodes not only small variants but also large variants
and is free of the artifacts present in the imperfect gen-
ome reference. The sequence-ready and nucleotide
resolution characteristics of the variants obtained from
the de novo genome assembly also enable the annota-
tion of their ancestral state and mechanism formation.
These features are known to be evolutionary and
pathologically important [9, 10].
Routine use of de novo assembly of short reads for

population-scale studies of genomic variants is compli-
cated by the requirement of high genome sequencing
coverage (≥30X), the need for sophisticated library con-
struction strategies, intensive computer memory re-
quirements for assembly (usually >64 GB), and the
limitations of current methods for assembling highly
repetitive and complex regions in the human genome
[11]. However, as sequencing costs decrease and assem-
bly programs improve, high-quality de novo genome as-
sembly becomes feasible. Around thirty-seven human
de novo genome assemblies have been released so far
(see Additional file 1: Table S1). The availability of
these data presents opportunities to obtain a more
complete catalogue of structural variants and novel se-
quences than that are previously available with higher
nucleotide resolution.
Before this study, we have established a framework

to identify homozygous structural variants and novel
sequences in two de novo human genome assemblies
[12, 13]. As part of the Genome Denmark consortium,
we also developed an improved pipeline to investigate
ten de novo genome assemblies from Danish trios [14].

In this study, we revised and extended the previous
framework by integration of several novel machine-
learning methods (Fig. 1, Additional file 2: Figure S1). In
addition, we re-compiled the BreakSeq schemes for an-
notation of the ancestral state and formation mechanism
of the identified structural variants and novel sequences
[15]. In sum, we developed a single software package,
AsmVar, to discover, genotype and characterize struc-
tural variants and novel sequences in population-scale
de novo genome assemblies. As a proof of principle, we
applied AsmVar to decipher the structural variants and
novel sequence present in 10 de novo assemblies of trios
from the Genome Denmark consortium, for which we
initially develop the AsmVar approach, and other seven
human de novo assemblies constructed using various
protocols (see Additional file 1: Table S1). The results
provide a direct view of the hidden genome architecture
of the human population.

Findings
Variant discovery from assembly-versus-assembly
alignment
Our approach starts with assembly-versus-assembly
alignment, for which we use the LAST aligner [16] with
the application of a split-alignment algorithm (Martin
Frith, personal communication). In the assembly-versus-
assembly alignment, we transverse each scaffold from 5’
to 3’ and record variants when mismatches, small inser-
tions or deletions (indels) or other more complex forms
of genome rearrangements are observed in one align-
ment block, or when breakpoints between two linear
alignment blocks occur (Fig. 1a). We categorize the vari-
ations between the reference and the individual de novo
assembly into ‘SNP’, ‘deletion’, ‘insertion’, ‘inversion’, ‘simul-
taneous gap’, or ‘intra- and inter-chromosomal transloca-
tion’, whereas the ones that cannot be characterized are
categorized as ‘no solution’. We group the unaligned se-
quences in the de novo assembly as ‘clipped sequences’
or ‘nomadic sequences’; these are novel sequence candi-
dates, but could also be due to contamination, assembly
errors or other artifacts. The reference regions that are
not covered by the de novo assembly are categorized as
‘inter-scaffold gaps’ or ‘intra-scaffold gaps’, and they are
often associated with large repetitive sequences in the
human genome or result from insufficient sequencing
depth.
Around the breakpoints of the structural variants, we

use an align-gap-excise alignment algorithm [17] to
perform local realignment (Fig. 1a). In this process, all
the variants are left-shifted and the representations of
complex variants are unified, which facilitates popula-
tion genetics studies of variation [18]. Subsequently, we
combine all the variants from different de novo genome
assemblies and store them in standard Variant Call
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Format (VCF) in accordance with the conventions of
the 1000 Genomes Project (Fig. 1b) [4]. When perform-
ing this step of the approach, we recommend including
the publicly available de novo genome assemblies from
the same population (termed prior de novo assemblies
in Fig. 1b) to increase the discovery power and provide
prior information for the subsequent variant score re-
calibration process.

Individual genotyping
We genotype the structural variants using a linear-
constrained Gaussian mixture model with three states,
AA, AR and RR, assuming that a reference allele (R)
and an alternative allele (A) are segregating in the hu-
man population. The Gaussian mixture process models
the density of the two-dimensional variables that record

the normalized counts of reads that support the refer-
ence allele (R intensity) and the alternative allele (A in-
tensity). Both intensities are obtained by realigning
reads against the two alleles (Fig. 1c).
We constrain the centres of the three genotype states on

the basis of the expected A and R intensities for each state
and approximate the weight of the Gaussian mixture
model by the proportion of individuals in the population
with a certain genotype. We optimize the parameters in
the Gaussian mixture model using an expectation-
maximization (EM) algorithm with linear constraints.
With the expected weight, centres and corresponding
standard deviations obtained from the training process,
we calculate the genotype likelihood, decide the genotype
and estimate the genotype quality for each individual (see
Additional file 2: Supplementary Methods for details).

Fig. 1 The AsmVar approach. Discovery, genotyping and characterization of structural variants and novel sequences from the de novo genome
assemblies on a population scale. Panels a - g represent different modules. See the main text for a detailed methodological description for each
module. See also Additional file 1 for the Glossary. NAHR, non-allelic homologous recombination; NHR, non-homologous recombination; TEI, transposable
element insertion; VNTR, variable number of tandem repeats
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In formulation, for a particular variant in the individ-
ual i, the genotype posterior probability of a particular
genotype j is computed as follows:

P Gijjdi
� � ¼

wjN dijμj; Σj

� �
XK

j¼1
wjN dijμj; Σj

� � ð1Þ

Gij represents the assumed genotype j for the individ-
ual i; di represents the two-dimension vector that com-
poses R intensity (the count of the reads uniquely
aligned to the reference allele R divided by the total
depth) and A intensity (the count of the reads uniquely
aligned to the alternative allele A divided by the total
depth) for the individual i; wj indicates the proportion of
individuals that have genotype state j; μj is the expected
value of mean of di given genotype state j; Σj is the ex-
pected value of standard deviation of di given genotype
state j. N(di|μj, Σj) is the probability of observing di pro-
viding the Gaussian mixture model with mean and
standard deviation μj and Σj. K refers to the total num-
ber of genotype states and is constantly 3 because our
model only considers bi-allelic loci so far. We will re-
lease a new model that accommodates a multi-allele
situation in AsmVar version 2.0.
The likelihood of observing di given a particular geno-

type Gij is:

P dijGij
� � ¼ wjN dijμj; Σj

� �
ð2Þ

Supposing all the individuals are unrelated to each
other, the log likelihood function is constructed as
follows:

ln P Djw; μ;Σð Þ ¼ ln
XK

j¼1

XN

i¼1
wjN dijμj; Σ j

� �� ��
ð3Þ

w, μ, Σ are optimized using an EM algorithm with linear
constraints. D refers to the set of all the observed data
di. The initial values for μ are centered around
[0.001,0.001], [0.5, 0.5] and [1.0, 1.0], corresponding to
the homozygous reference allele (RR), heterozygous vari-
ants (RA) and homozygous variants (AA) genotype
states, respectively. These values are multiplied by a scal-
ing factor m that ranges from 0.8 to 1.2 with interval 0.1
and therefore there will be five rounds of training. The
best m is selected on the basis of the bias from a set of
linear constraints and the Mendelian errors (see Additional
file 2: Supplementary Methods for details). The initial value
for the vector w, i.e. genotype frequency for three genotype
states is [1/3, 1/3, 1/3].
The genotype of the individual (Gij) is selected as the

one out of the three that has the highest posterior
probability.

The Phred-scale genotype quality score (GQi) is esti-
mated by:

GQi ¼ −10 � log10 1−
P GTijdð ÞXK

j¼1
P GTijdð Þ

0
@

1
A ð4Þ

Variant quality score recalibration
Similar to the approach implemented in GATK [2], we
apply a Bayesian Gaussian mixture model to the raw
variant calls to assign a quality score and classify the var-
iants as PASS and FALSE. This is a classification process
guided by a positive training set, a negative training set,
a set of technical features and, optimally, an independent
validation set (Fig. 1d).
The positive and negative sets consist of true positive

and true negative variants with additional experimental
or computational evidence. We offer the users options
to include their own training and validation sets. The
positive sets can be the variants that are known to be
polymorphic, variants independently assembled in more
than one individual (double-hit events), variants that
have additional computational evidence (such as the
ones that are called with other software tools) or ideally
variants that have been experimentally validated. The
negative sets are variants known to be artifacts.
Three types of false-positive sources exist: assembly

error, global alignment errors and local alignment arti-
facts. AsmVar captures nine metrics associated with
these sources of error, including: the local assembly gap
ratio; the depth of the reads that support the alternative
allele; the depth of the reads that neither support the
reference allele nor the alternative allele; the misalign-
ment probability and the alignment score of the scaffolds
that carry the structural variants; the local sequence
identity; the position of the variants in the scaffold; and
the proper aligned read ratio; and the improper aligned
read ratio in the short-read versus the reference align-
ment (see Additional file 2: Figure S3). The users can
specify all of these features or only a few selected fea-
tures in the training.
We fit the quantitative measurements of a selected set

of these technical features into the Gaussian mixture
model and compute the log odds ratio of the likelihood
that the observed variant arises from the positive train-
ing model versus the likelihood that it comes from the
negative training model.
Below is the formulization of the recalibration process:
p01 and p02 are the prior probability for the variants

conditioned on being positive and negative, respectively.
We assign known variants with higher prior probability
of being positive compared to that of the novel ones. m
is the number of the cluster in the guassian mixture
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model ranging from 1 to the maximum number 8 by de-
fault. w indicates the size of a certain center provided m.
x is a vector that records the distribution of the features.

P xjGpositive
� � ¼ p01 xð Þ

Xm

i¼1
wiN xjμi;

X
i

� �
ð5Þ

P XjGNegative
� � ¼ p02 xð Þ

Xn

j¼1
wjN xjμj;

X
j

� �
ð6Þ

p01 xð Þ ¼ 0:6; x is known variant
0:4; Otherwise

�
ð7Þ

p02 xð Þ ¼ 0:4; x is known variant
0:6; Otherwise

�
ð8Þ

Score xð Þ ¼ − lg 1−P xjGpositive
� �� �

þ lg 1−P xjGnegative
� �� � ð9Þ

The quality score threshold is determined so as to
maximize the area under the receiver operating charac-
teristic (ROC) curve (AUC), where we keep most of the
known positive variants while minimizing the inclusion
of the known negative variants. It is better if the known
positive and negative training variants (validation) are
independent sets from the validation sets. However,
when lacking such independent sets, the users can also
use the option -cv in AsmVar to invoke the cross valid-
ation module, which uses the training set to assess the
error rate.
Since excessive heterozygosity and homozygosity are

good indicators of genotyping errors [7], we also apply
the inbreeding coefficient to filter the loci with excessive
heterozygosity or homozygosity (6). According to the lat-
est investigations of artifacts in variant calling from
high-coverage samples [7] and our own observations, ex-
cessive heterozygosity is relevant to the existence of
large segmental duplications, whereas excessive homozy-
gosity can derive from the assembly errors of the human
genome reference or from cryptic systematic errors dur-
ing data processing and variation calling.
The inbreeding coefficient (F) is computed as below:

F ¼ 1:0 − Nhet = 2:0 � p � q � Nð Þð Þ ð10Þ
Where p and q are the sample allele frequencies (only

the 20 parents are considered in our study of ten Danish
trios) of the reference and alternative alleles, respectively.
N refers to the total number of unrelated individuals

in a population.
Nhet refers to the total number of unrelated individuals

(N) that are heterozygous.
By default, AsmVar removes variants with an inbreed-

ing coefficient < -0.4 or >0.7. The threshold for inbreed-
ing coefficient is determined based on the basis of its
distribution (see Additional file 2: Figure S12), taking the
GATK experience into consideration [2].

Characterization of the ancestral state of the structural
variants
After obtaining the structural variants present in the de
novo genome assemblies, we annotate the ancestral allele
state of a structural variant by comparing the identity
and the aligned ratio of the reference allele and the alter-
native allele to the orthologous region in an outgroup
genome, such as a primate genome when analyzing hu-
man sequences (Fig. 1e). By default, AsmVar uses four
primate genomes (Chimpanzee panTro4, Orangutan
ponAbe2, Gorilla gorGor3, Macaque rheMac3) as the
outgroup genomes for comparisons. The allele that has
substantially higher identity and aligned ratio to the
orthologous region of the outgroup genome is identified
as the ancestral allele.
We first construct the reference and the alternative al-

leles taking the flanking 500 bp around the variant re-
gion into account. We align both the reference and the
alternative alleles to the genomes of the four primates
using LAST [16] and measure the similarity using the
identity and aligned ratio from the alignment. We
categorize the variants as: ‘NONE’, when both the refer-
ence and the alternative alleles cannot be aligned to any
of the primate genomes; ‘NA’, when both the reference
and the alternative alleles can be aligned to one of the
primate genomes but has less than 95 % identity and
95 % aligned ratio for all four primates; ‘Common’, when
both the reference and the alternative alleles have
greater than 95 % identity and aligned ratio for all four
primate genomes; ‘Deletion’, when the longer allele has
greater than 95 % identity and aligned ratio for any of
the primate genomes and the shorter allele has less than
95 % identity and aligned ratio for any of the primate ge-
nomes; ‘Insertion’, when the longer allele has greater
than 95 % identity and aligned ratio for any of the pri-
mate genomes and the shorter allele has less than 95 %
identity and aligned ratio for any of the primate ge-
nomes; and ‘Conflict’, when the ‘Insertion’ and ‘Deletion’
judgment is different between different primate
genomes.
Finally, we rectify the types of variation on the basis of

the ancestral allele state. For example, if the assembly-
versus-reference alignment suggests an insertion, but an-
cestral state analysis indicates that the assembly allele is
the ancestral allele, we eventually annotate this variant
as a deletion instead (Fig. 1e).

Characterization of formation mechanisms of the
structural variants
We characterize the formation mechanism of a variant
according to the pattern of repeats in and around the
variant sequence using a classification scheme similar to
the BreakSeq method [19] and the 1000 Genomes Pro-
ject approach [20]. Briefly, we align the variant allele
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sequences to RepBase using RepeatMasker [21] and
perform reciprocal alignment between the left and right
breakpoint sequences using BLASTn [22] (Fig. 1e;
Methods). The assembly alleles that show substantial
similarity with simple repeats or mobile element se-
quences in RepBase are annotated as variable number
of tandem repeats (VNTR) or transposable element in-
sertion (TEI), respectively. The variants that have more
than 85 % identity between the two breakpoints are an-
notated as non-allelic homologous recombination
(NAHR). Variations that contain short tracts of identi-
cal sequences around the breakpoint (micro-homology
phenomena) are annotated as non-homologous rear-
rangements (NHR). In addition, if the full variant se-
quence is completely identical to the 3’ sequence of the
right breakpoint, it is annotated as copy count change
(CCC), which mainly derives from DNA polymerase
slippage [20].

Novel sequence
In addition to structural variants, we identify novel se-
quence insertions and novel sequences that are not well
aligned to the consensus human genome reference but
have high similarity to other human and primate ge-
nomes (identity ≥0.95 and align ratio ≥0.95) (Fig. 1f; see
Additional file 2, Supplementary Methods for details).
We analyse the distribution, ancestral state and mechan-
ism of formation of all novel sequence and link the novel
sequences to the closest sequences from known de novo
assemblies.

Scalability
AsmVar is highly efficient and currently takes only ap-
proximately 16 h to discover, genotype and characterize
the structural variants and novel sequences from a de
novo assembly using 8 CPU cores and 64 GB of memory
(see Additional file 3: Table S2).

Conventions and graphical presentation
To facilitate downstream analysis and research commu-
nication, we record the structural variants in a standard
VCF [23], according to the 1000 Genomes Project con-
vention. AsmVar also summarizes the types, size
spectrum, ancestral state and formation mechanism of
the structural variants and novel sequences from the in-
vestigated samples graphically in demo plots.
A complete description of the AsmVar approach is

provided in Additional file 2: Supplementary Methods.

Discovery and genotyping of structural variants from 37
human de novo genome assemblies
We show the utility of the AsmVar strategy by applying
this tool to systematically investigate the structural vari-
ants and novel sequence in the currently available de

novo assemblies of the human genome. By 31 July 2014,
37 human de novo assemblies are accessible to us, which
include the ten Danish trios from the Genome Denmark
consortium [14] and another seven de novo assemblies.
Detailed information about the 37 de novo assemblies is
listed in Additional file 1: Table S1. We present the re-
sults in a series of demo plots generated by the AsmVar
package.
Using the AsmVar strategy, we initially identify a total

of 8,609,194 raw non-SNP variants and subsequently as-
sign genotype likelihoods, genotype and genotype quality
to each individual. As a positive control set, we
randomly select a subset of 626,028 double-hit exact
breakpoint structural variants that are independently as-
sembled from more than two individuals (see Additional
file 2: Figure S2). We then quantify the variant quality
score in the recalibration module l (see Additional file 2:
Figure S3). Finally we obtain 3,176,200 structural vari-
ants from the 37 de novo assemblies, with lengths that
range from 1 bp to 50 kbp; approximately 93 % of the
positive training variants can be recovered and the false-
positive rate is approximately 0.7 % (see Additional file 2:
Figure S4).
As shown in Fig. 2, our approach reveals a variety of

structural variants with nucleotide resolution, which in-
clude 1,194,473 deletions, 1,151,871 insertions, 14,745
block substitutions, 587,143 length-asymmetric replace-
ments, 171 inversions and 223,477 translocations. The
variants range from 1 bp to 100 kbp, with peaks around
300 bp and 6 kbp, which correspond to transposition
events that took place in the evolution of human popu-
lations (Fig. 3a). The individual load and size spectrum
of the structural variants approximate those reported by
the HuRef genome investigation [24], but these data
have been consistently missed in genome analyses in
which re-sequencing-based approaches were used. The
latter mainly restricts in deletion investigations and dis-
plays substantial bias over size spectrum and resolution
(see Additional file 2: Figure S5) [4, 5].

Benchmarking the sensitivity and specificity of structural
variant genotyping by AsmVar
We benchmark the AsmVar approach using both com-
putational and experimental evidence. As 51.14 % of the
structural variants identified by AsmVar (N = 1,624,308)
are novel, that is, not present in the current dbVar data-
base, we perform computational validation of the novel
callset. By observing a random selection of 600,000 of
the novel structural variants, we discover that the nor-
malized read intensity is systematically stronger for
the alternative allele than for the reference allele (see
Additional file 2: Figure S6). This finding suggests that
most of the novel structural variants are true polymor-
phisms within the human population.
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We subsequently evaluate the structural variant geno-
typing performance of AsmVar using population metrics
including family relatedness and the Mendelian error
rate. Those metrics are computed using the PLINK soft-
ware [25]. The probability of identity by descent being
equal to 1 (IBD1) for the parent-offspring genomes var-
ies from 0.02 to 0.14 for deletions and 0.10 to 0.19 for
insertions, whereas the probability of pairwise IBD0 for
unrelated individuals approximates zero (see Additional
file 2: Figure S7). The Mendelian error rate ranges from
0.01 to 0.21 for deletions and 0.03 to 0.10 for insertions
(see Additional file 2: Figure S8). Based on these metrics,
we estimate that the genotyping error for AsmVar calls
is approximately 2 % to 20 %. Although the performance
of AsmVar for structural variant genotyping is not as
good as that for GATK SNP identification, the genotyp-
ing accuracy of AsmVar substantially exceeds that of the
most widely used software for structural variation geno-
typing, GenomeStrip [6], which was the structural vari-
ation caller and genotyper adopted in the 1000 Genomes
Project (see Additional file 2: Figure S7 and Figure S8).
Furthermore, we benchmark the performance of Asm-

Var using two datasets for which experimental evidence
exists. First, as NA12878, which is included in our study,
is a well-studied individual genome, we benchmark the
sensitivity of AsmVar by comparing the NA12878 Asm-
Var non-reference genotype calls to the 21415 dbVar

structural variation records for this individual [5]. These
structural variants include 18,108 deletions, 294 inser-
tions, 491 duplications and 39 inversions that are >50 bp
and were validated by different experimental approaches.
Also, there were 2050 deletions, 152 insertions, 244 du-
plications and 37 inversions that failed experimental
validation.
Among the validated structural variants, 3738 are

missed by AsmVar without enrichment of a certain size
spectrum (see Additional file 4: Table S3). Therefore, the
overall false-negative rate of AsmVar is approximately
20.1 %. Manual investigation into these missing calls
suggests three main reasons for false-negative calls: 1)
assembly gaps due to insufficient coverage; 2) assembly
gaps derived from long repetitive sequences; and 3) as-
sembly errors probably result from underlying complex
genomic sequences.
AsmVar calls none of the 2483 variants from the

NA12878 dbVar dataset that failed validation. However,
as the true number of variants present in NA12878 is
not available at the moment based on our observations
of the Illumina Platinum Genomes and Genome In A
Bottle datasets [18], we are not able to unbiasedly as-
sess the false-positive rate of AsmVar using the
NA12878 public data. In addition, as genotype informa-
tion about structural variants in the NA12878 dbVar re-
cords is not available, we cannot benchmark the

Fig. 2 AsmVar demo plot of structural variants in the 37 human de novo assemblies. ‘Number’, ‘Length’, ‘Min_length’ and ‘Max_length’ indicate
the total number, total length, minimum length and maximum length of structural variants that are present in the 37 human de novo genome
assemblies. Also shown are the ‘Individual load’ and ‘standard deviation’ (‘SD’) of both the number and length of structural variants for each type
of variant. The dot symbols in the plot indicates individual load
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genotyping accuracy of AsmVar using the dbVar
information.
To further assess the specificity of AsmVar in struc-

tural variation discovery, we randomly select one Danish
trio from the Genome Denmark consortium and validate
272 novel structural variants with a range of different
sizes (≥50 bp) and formation mechanisms using the
Sanger sequencing technology [14]. We successfully
assay 68 structural variants, and from this analysis we
estimate that the overall false-discovery rate of AsmVar
for structural variants is 7.4 % (5/68, 95 % confidence
interval = 0.03-0. 16) (see Additional file 5: Table S4).
For the remaining 204 loci, 158 are not successfully
assayed because of failure in primer design and 46 are
not successfully assayed because of other experimental
problems, such as the failure of the PCR or sequencing.

The validation of structural variation remains a chal-
lenge. The experimental failure rate is high, probably be-
cause most of the structural variants occur in repetitive
sequences of DNA. We therefore include in the AsmVar
package an extension script to plot out the proper and
the improper read coverage at and around the loci in
which structural variation was identified (see Additional
file 2: Supplementary Methods, for definition of proper
and improper reads; see also Additional file 2: Figure S9).
Manual inspection indicates that the false-positive rates
for the two categories of failure attempts are 6.5 % and
8.2 %, respectively. Owing to the limited number of valid-
ation loci available for each size band or for each type of
formation mechanism, we cannot correlate the false-
discovery rate with the size spectrum and the formation
mechanism of the variants with high confidence.

Fig. 3 AsmVar demo plot of the ancestral state and mechanisms of origin of deletions and insertions. a Size spectrum of the deletions and
insertions. The box plot corresponds to the quartiles of the individual load according to the size distribution. Both the x-axis and the y-axis use
logarithm scales. b Annotation of the ancestral state of the structural variants according to the size spectrum. The y-axis denotes proportion.
c Annotation of the mechanism of formation of the structural variants according to the size spectrum. The y-axis denotes the proportion of the
variants that belong to differnet kinds of mechanisms as a function of the variation size. By default, AsmVar annotates the mechanisms of formation of
structural variants <50 bp as ‘UNSURE’. NAHR, non-allelic homologous recombination; NHR, non-homologous recombination; TEI, transposable element
insertion; VNTR, variable number of tandem repeats; Other abbreviations in the plot are INS, insertions and DEL, deletions
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The ancestral state of the structural variants
One characteristic of the variants in AsmVar is that their
sequences are available, which is the precondition to de-
fine the ancestral state of a variant. To obtain insight
into the evolutionary origin of the structural variants ob-
tained from the 37 human de novo assemblies that were
included in this study, we apply AsmVar to analyze the
ancestral state of the variants according to the size
spectrum. We summarize the AsmVar results using the
demo plot functionality (Fig. 3b). Owing to the lower
quality of some of the primate genomes when compared
with that of the human de novo assemblies, we cannot
characterize the ancestral state of 51.2 % of the variants.
By comparing the human datasets to the outgroup ge-
nomes, we discover that 9 % of the insertions in the de
novo assemblies show higher similarity to the outgroup
genomes than to the human reference genome and are
indeed evolutionally deletion events in the first begin-
ning. This observation also highlights the incomplete-
ness of the consensus human genome reference
(Fig. 3b). Conversely, we discover that 28 % of the classi-
fied deletions are instead insertion events. Consistent
with the molecular level understanding, the deletions
that have arisen owing to TEI mechanisms tend to be in-
sertions in the historical course (Fig. 3b). Our approach
reveals similar patterns of distribution of ancestral states
among structural variants than those reported in previ-
ous population-scale investigations in which a set of
large deletions and a very limited number of tandem du-
plications were analyzed [5].

The formation mechanism of the structural variants
Nucleotide resolution of the structural variants identified
using AsmVar enables the characterization of their
mechanisms of formation. We classify the mechanisms
of formation of the structural variants into VNTR, TEI,
NAHR, NHR and CCC, i.e. copy number changes de-
rived from a DNA polymerase slippage process across
the size spectrum (Fig. 3c). Our approach demonstrates
a symmetric view of mechanisms distribution corre-
sponding to our molecular level understandings. Most of
the 1–10 bp insertions and deletions have exact copy
number changes that are relevant to DNA polymerase
slippage. The 300 bp and the 6 kbp variants are enriched
in TEI and the larger variations (>1,000 bp) arise from
NAHR and NHR, whereas the smaller ones are enriched
in VNTR [15]. Most of the TEI-derived deletions indeed
have insertions as the ancestral state. These observations
follow our biological intuition, which indirectly proves
the robustness of our approach.

Novel sequence
In addition to structural variants, we identify 9 million
base pairs of novel sequences (>100 bp), on average, per

individual that are not present in the human genome
reference sequence, as shown in the AsmVar demo plot
(Fig. 4).
We divide the novel sequences into novel sequence in-

sertions and nomadic novel sequences (Fig. 1g). We first
investigate the ancestral state, the formation mechanism
and chromosomal distribution of the novel sequence in-
sertions. 90 % of the novel inserted sequences show
higher similarity to the outgroup primate genomes com-
pared to the human reference genome. Therefore, we
observe a higher number of deletions than insertions in
the ancestral state analysis, which correspond to NHR
and NAHR molecular mechanisms of origin [19]
(Fig. 4a). The novel sequence insertions are distributed
across the whole human genome, affecting the structure
of 71 genes. We randomly select 18 large novel sequence
insertions (≥1 kbp) and apply quantitative PCR (qPCR)
to validate their existence. Manual observation of the
electrophoretic band validates all of these insertions (see
Additional file 6: Table S5). However, AsmVar predicts
the insertion length incorrectly for one locus.
We subsequently learn about the un-localized novel

sequences identified by AsmVar by linking each of the
sequences of one individual to their closest neighbour
(Fig. 4b). We notice that CHM assembly contains a very
limited number of novel sequences and confirm that this
assembly is a reference-guided de novo assembly. This
finding also highlights a bias of re-sequencing-based ap-
proaches for investigation of genome variation. Except
for CHM genome assembly, we observe that the propor-
tion of nomadic sequences decreases as the quality of
the de novo assembly increases. We reason that a high-
quality de novo assembly contains novel sequences that
cannot be captured by de novo assemblies with lower
quality. When investigating the closest relatives of the
novel sequences, we observe a consistent ranking of pro-
portion from HuRef to YH and NA12878, which corre-
sponds to the quality of these de novo assemblies. These
observations indicate that obtaining a comprehensive
profile of the variations present in a human genome re-
lies on high-quality de novo assemblies (Fig. 4b).

Conclusions
We have presented a novel and efficient approach for
discovering, genotyping and characterizing the structural
variants and novel sequence from population-wide de
novo genome assemblies.
We have implemented several state-of-the-art bio-

informatics algorithms and techniques in the software.
We applied a sophisticated genome-versus-genome
comparison strategy that efficiently integrates the split-
alignment algorithm from LAST [16] and the align-gap-
excise algorithm from AGE [17], and subsequently im-
plement an efficient method to initially identify various
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forms of structural variation and novel sequence from
the assembly-versus-assembly alignment. We imple-
mented a statistical approach to genotype the structural

variants based on the information from reads. By using a
machine-learning approach to distinguish the true vari-
ants from technical artifacts, we recover the structural

Fig. 4 AsmVar demo plot of novel sequence identified in this study. a Distribution of the novel sequence insertions (> = 100 bp) over the
different human chromosomes, with their mechanisms of origin (NAHR, NHR, VNTR) and their ancestral states (deletion and insertion) shown
from outside to inside. b Total length (x-axis) and distribution of the closest relativeness of the nomadic novel sequence. NAHR, non-allelic
homologous recombination; NHR, non-homologous recombination; TEI, transposable element insertion; VNTR, variable number of tandem repeats
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variants and novel sequence from the de novo assemblies
with good sensitivity and specificity. In addition, we in-
clude in the AsmVar package systematic supportive
functionality for biological interpretations of the data,
such as annotation of ancestral state and mechanism of
origin of the structural variants and novel sequences,
which is of great interest to human population genetics
and clinical applications.
We applied the AsmVar to the 37 human de novo gen-

ome assemblies used in this analysis and revealed a wide
spectrum of human genomic variation present in the hu-
man population, including large deletions but also inser-
tions and other complex forms of structural variation, as
well as novel sequences, which are usually missed in hu-
man population studies at present. The sequence-ready
and nucleotide resolution characteristics of the AsmVar
calls also enable downstream fine-scale investigations
into the ancestral state and formation mechanism of
structural variants and novel sequences. These novel in-
sights reflect the limitations of re-sequencing strategies
and underscore the promise of the de novo assembly-
based analysis strategy.
We are considering extending and improving AsmVar.

The current genotyping approach is practical but re-
quires alignment of the short reads towards both the ref-
erence and the de novo assemblies and thus is laborious.
Furthermore, the current approach does not accommo-
date multi-allelic loci very well. To improve the effi-
ciency of this process and to improve the integration of
population information, we are developing a probabilis-
tic reference-alignment-free kmer-based approach that
can directly obtain the allele intensities from the raw
reads, which therefore reduces effort and will offer a so-
lution to genotyping novel sequences (Lasse et al.,
manuscript in preparation).
Finally, we note that the quality of the de novo genome

assembly is an important limiting factor for AsmVar ana-
lysis. The difficulties in assembling complex genomic re-
gions such as HLA, KIR and long repeats display inferior
performance [11]. Nonetheless, the current version of
AsmVar offers high-quality calls and interpretations of
structural variants and novel sequence present in the hu-
man populations from analysis of de novo genome assem-
blies. As sequencing and computational costs decrease
and experimental technologies and de novo assembly algo-
rithms evolve, more and more high-quality de novo assem-
blies from a population will become available. These
assemblies are essential resources and great opportunities
for us to carry out in-depth investigations into structural
variation and novel sequence in the population and to
construct a population-wide pan-genome. We hope the
future developments and improvements of AsmVar will
contribute to the comprehensive profile of the structural
variants and novel sequences in different populations.

Methods
Sanger sequencing validation of the structural variants
(≥50 bp)
We picked one trio (trio 1298) from the Genome
Denmark consortium and validated a randomly selected
set of variants present in the trio genomes using Sanger
sequencing. The selected variants included 272 novel
structural variants with different sizes and mechanisms
of origin. We designed primers using an in-house pipe-
line integrating Primer3 and Primer-Blast. We se-
quenced the successfully amplified PCR amplicons with
the Sanger AB3730xI DNA Analyzer. We subsequently
analyzed the chromatograms using PolyPhred 6.1849 to
genotype SNPs and small indels. Hereafter, all calls were
manually inspected using Chromas 2.11.

qPCR validation of the novel sequence insertions (≥1 kbp)
We designed primers over the flanking regions of the
novel sequences. For a true novel sequence, we expected
to observe two bands with size differences of more than
1 kbp if the selected individual was heterozygous for the
variant or two bands with a size that is greater than the
reference length if the selected individual was homozy-
gous for the variant. The size of the band was estimated
by manual inspection of the electrophoretogram. To
provide higher resolution for the band size, we applied
the predicted product length of the reference allele and
the alternative allele by in silico PCR using Primer-
BLAST.

Evaluation of false-negative and false-positive rates of
structural variant discovery in NA12878
We downloaded the structural variation list from the
1000 Genomes Project pilot project and extracted the
18,932 structural variants that were validated in
NA12878. We defined false-negative calls as the struc-
tural variants that are present in the NA12878 dbVar
calls dataset but for which AsmVar did not emit a non-
reference genotype call that has more than 50 % recipro-
cal overlap for the variants from the NA12878
individual.

Availability and requirements
Project name: AsmVar
Project homepages: https://github.com/bioinformatics-

centre/AsmVar
Operating system(s): Unix, Linux, Mac OS X
Programming language: C++, Python, Perl
Other requirements: C++ 4.7.0 or higher, Python 2.7.0

or higher, Perl 5.10.1 or higher
License: GNU GPL
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Availability of supporting data
The source code for AsmVar is available at https://github.
com/bioinformatics-centre/AsmVar. Example data and
snapshots of the code are also available in the GigaScience
GigaDB database [26].
The NA12878 dbVar variants are available via [27].
The assembly sequences of the four primates used in

the ancestral state annotation are downloaded from
UCSC [28–31].
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Supplementary Figures S1-S12. (DOCX 2871 kb)
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