
REVIEW Open Access

Methodological challenges and analytic
opportunities for modeling and
interpreting Big Healthcare Data
Ivo D. Dinov

Abstract

Managing, processing and understanding big healthcare data is challenging, costly and demanding. Without a robust
fundamental theory for representation, analysis and inference, a roadmap for uniform handling and analyzing of such
complex data remains elusive. In this article, we outline various big data challenges, opportunities, modeling methods
and software techniques for blending complex healthcare data, advanced analytic tools, and distributed scientific
computing. Using imaging, genetic and healthcare data we provide examples of processing heterogeneous datasets
using distributed cloud services, automated and semi-automated classification techniques, and open-science protocols.
Despite substantial advances, new innovative technologies need to be developed that enhance, scale and optimize
the management and processing of large, complex and heterogeneous data. Stakeholder investments in data
acquisition, research and development, computational infrastructure and education will be critical to realize the
huge potential of big data, to reap the expected information benefits and to build lasting knowledge assets.
Multi-faceted proprietary, open-source, and community developments will be essential to enable broad, reliable,
sustainable and efficient data-driven discovery and analytics. Big data will affect every sector of the economy and
their hallmark will be ‘team science’.
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Background
This article outlines some of the known barriers, intellec-
tual and computational challenges, and opportunities in
the area of big healthcare data (BHD). A blend of ‘team
science’, open-source developments, engagement of diverse
communities, innovative education and hands-on training
will be essential to advance the field of biomedical research
[1]. Technical problems, substantial resource costs, and the
intellectual demands of handling, processing and interro-
gating BHD are barriers to advancement and progress. At
present, a canonical framework for representation, analysis
and inference that is based on incongruent, multi-source
and multi-scale biomedical data does not exist. After two
decades of rapid computational advances, a tsunami of
data and substantial scientific discoveries, urgent unmet
needs remain for (near) real-time predictive data analytics,

(semi) automated decision support systems and scalable
technologies for extracting valuable information, deriv-
ing actionable knowledge and realizing the huge poten-
tial of BHD.
The pillars of complexity science in healthcare include

the diversity of health-related ailments (disorders) and
their co-morbidities, the heterogeneity of treatments and
outcomes and the subtle intricacies of study designs, ana-
lytical methods and approaches for collecting, processing
and interpreting healthcare data [2]. In general, BHD has
complementary dimensions - large size, disparate sources,
multiple scales, incongruences, incompleteness and com-
plexity [3]. No universal protocol currently exists to model,
compare or benchmark the performance of various data
analysis strategies. BHD sizes can vary, although com-
plexity studies frequently involve hundreds to thou-
sands of individuals, structured and unstructured data
elements, and metadata whose volume can be in the
‘mega-giga-tera’ byte range. Such data often arise from
multiple sources and can have many different scales,
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which makes modeling difficult. Finally, the complexity
of the data formats, representations, sampling incon-
gruences and observation missingness further compli-
cates the data analysis protocols [4].
There are four phases in the analysis of BHD. The first

phase is always to recognize the complexity of the
process and understand the structure of the observed
data as its proxy. Next comes the representation of BHD
that should accommodate effective data management
and computational processing. The last two phases of
BHD analytics involve data modeling (including embed-
ding biomedical constraints) and inference or interpret-
ation of the results.
Innovative scientific techniques, predictive models

and analytics need to be developed to interrogate BHD
and gain insight about patterns, trends, connections
and associations in the data. Owing to the unique char-
acteristics of BHD, studies relying on large and hetero-
geneous data trade off the importance of traditional
hypothesis-driven inference and statistical significance
with computational efficiency, protocol complexity and
methodological validity.

Strategies, techniques and resources
Structured and unstructured BHD
A key component of the complexity of BHD is the fact
that most of the data is often unstructured, which means
that in their raw format they are mostly qualitative or in-
congruent; this lack of congruence effectively stifles the
ability to computationally process BHD [5, 6]. Examples
of such unstructured data include raw text (such as clin-
ical notes), images, video, volumetric data, biomedical
shape observations, whole-genome sequences, pathology

reports, biospecimen data, etc. Text mining [7], image or
sequence analysis [8] and other preprocessing techniques
[9, 10] need to be used to give structure to this unstruc-
tured raw data, extract important information or generate
quantitative signature vectors. For example, text prepro-
cessing can use statistical parsing [11], computational lin-
guistics [12, 13] and machine learning [14] to derive
meaningful numerical summaries. Information extraction
approaches, such as entity recognition [15], relation ex-
traction [16], and term frequency and inverse document
frequency techniques [17, 18], provide mechanisms to ex-
tract structured information from unstructured text.
Figure 1 shows an example of text parsing and semantic
interpretation of clinical notes to obtain structured data
elements that enable subsequent quantitative processing
and statistical inference.
In the past decade, a sustained effort has been made

to develop data standards, controlled vocabularies and
ontologies for structural or semantic representations of
data and metadata [19–22]. Specific examples of suc-
cessful representation platforms for biomedical and
healthcare data include minimum information stan-
dards. Examples of such standards include minimum
information for biological and biomedical investigations
(MIBBI) [23], minimum information about a microarray
experiment (MIAME) [24], minimum information re-
quested in the annotation of biochemical models (MIR-
IAM) [25], and core information for metabolomics
reporting (CIMR) [26]. Examples of effective solutions
and data standards developed and supported by various
consortia include investigation/study/assay (ISA) [27],
Clinical Data Interchange Standards Consortium (CDISC)
[28], proteomics mass spectrometric data format (mzML)

Fig. 1 An example of parsing and interpreting unstructured clinical notes (left) and deriving structured data elements (right)
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[29], and the nuclear magnetic resonance spectroscopy for
metabolomics data markup language (nmrML) [27].
Powerful controlled vocabularies enable annotation, inte-
gration and servicing of millions of names, concepts and
meta-data (e.g. diseases, conditions, phenotypes), and their
relationships, in dozens of biomedical vocabularies, such
as medical subject headings (MeSH) [30], gene ontology
(GO) [31], and systematized nomenclature of medicine-
clinical terms (SNOMED CT) [32]. Finally, there is a
broad spectrum of domain-specific biomedical modeling
standards, such as predictive model markup language
(PMML) [33], XML format for encoding biophysically
based systems of ordinary differential equations (CellML)
[34], systems biology markup language (SBML) [35, 36],
neural open markup language (NeuroML) [37] and tumor
markup language for computational cancer modeling
(TumorML) [38]. These architectures enable mathemat-
ical modeling and representation of biological constraints,
and also promote machine-learning applications through
the use of meta-learning schemes, data mining, boosting
or bagging [39]. In a similar way, imaging, volumetric and
shape-based observations can be preprocessed (e.g. by ap-
plication of inhomogeneity correction [40], surface model-
ing [41], feature segmentation [42], etc.) to generate
simpler biomedical morphometry measures, or bio-
markers, that can be used as proxies of the raw unstruc-
tured data [43–46]. In general, summarizing data involves
extractive or abstractive approaches for attaining struc-
tured information that is computationally tractable. Nat-
ural language processing (NLP) [47] is commonly used in
healthcare, finance, marketing and social research as an
abstractive summarization or a classification technique.
Audio analytics (e.g. large-vocabulary continuous speech
recognition) [48, 49] provide a mechanism for preprocess-
ing and analyzing unstructured speech or sound data to
facilitate subsequent extraction of structured information.
Similarly, video content analysis (VCA) [50] can be used
to monitor, analyze and extract summary information
from live or archived video streams. In addition, such
video analytics provide a valuable tool for longitudinal sur-
veying, monitoring and tracking objects in 3D scenes.

Graph networks
Social media applications, biomedical and environmen-
tal sensors, and municipal and government services
provide enormous volumes of data that can carry
valuable information. However, the informational con-
tent of such data might be hidden from plain view,
entangled or encoded, which obfuscates the extraction
of structured data and their interpretation in the net-
working context in which they were acquired. Content-
based social analytics [51] focus on user-provided data in
diverse social media platforms, wearables, apps and web
services. Social data are always voluminous, unstructured,

noisy, dynamic, incomplete and often inconsistent. In
addition to the rudimentary challenges of managing such
complex data, researchers encounter problems related to
continuous software updates, technological advances (e.g.
wearables), web server patches and product feature
changes occurring during social studies.
Social network analytics [52] aim to harmonize, aggre-

gate and synthesize structural attributes by using auto-
mated (unsupervised) [53] or semi-supervised algorithms
[54] for data processing, discovery of relationships, or pat-
tern extraction [55] among the participating social data
entities. Social network modeling represents the data as a
set of nodes (observations) and edges (relations between
observations) that reflect the study participants and the
associations within the network. Activity networks are a
type of social graphs in which the nodes are either data el-
ements or cases (participants) and the edges represent the
actual interactions between pairs of nodes. Examples of
interactions include dependencies (causal or relational) in
which active relationships might be directly relevant to
the network analysis. Social graphs are an alternative in
which edges connecting pairs of nodes only signify the
existence of a loose connection or weak link between
the corresponding entities. Social graphs are useful to
identify communities, clusters, cohorts or hubs. In
scale-rich graphs, the connections between the nodes
are uniformly random. Whereas in scale-free networks,
the distribution of degrees of connectedness follows a
power law with the increase in the number of nodes. Sev-
eral powerful graphing methods exist for rendering, inter-
rogating and visualizing complex network data [56–59].
Two network visualization examples are shown in Fig. 2.
Community discovery graph methods [60, 61] facilitate

the implicit extraction of harmonious subgraphs within a
network. Similar to clustering, community detection pro-
vides the means to summarize large networks, uncover in-
trinsic patterns or behaviors and predict critical properties
of the network [62, 63]. Graph-based data mining can be
used to partition networks into disjointed subgraphs (sub-
networks, or hubs) on the basis of node similarity or dis-
tance measures. To model, evaluate and understand the
influence of various nodes (actors) or edges (relations) in
a social network we can use social influence analysis [64,
65]. As actions and behaviors of individuals within a social
network affect others to varying degrees, assessing the
joint influence of all participants on the entire community
provides quantitative information about the strength of
the network connections [66]. Social influence analysis
captures the importance of nodes in the network and the
stability, dynamics and efficiency of the entire social bio-
sphere, and enables the modeling of influence diffusion
through the network. Examples of specific approaches in-
clude linear threshold modeling and independent cascade
modeling [67]. Various quantitative measures describing
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the social network characteristics can be defined [68]. Ex-
amples include measures of centrality (e.g. degree, be-
tweenness, closeness, eigenvector or Katz centrality),
graph distance measures (e.g. graph distance matrix, ver-
tex eccentricity, graph radius), transitivity (e.g. graph reci-
procity, global clustering coefficient, mean clustering
coefficient), similarity (e.g. mean neighbor degree, mean
degree connectivity, vertex dice similarity), etc. [69–71].
An important problem in social network research is

predicting prospective linkages between the existing
nodes in the graph network [72, 73]. The structure of
social networks is mostly dynamic and continuously
morphs with the creation of new or destruction and
modification of existing nodes or edges. Understanding
the internal network organization might enable the pre-
diction of the dynamics or evolution of the network.
Naturally observed networks, such as the internet, social
networks, air-transportation networks and metabolomics
networks, frequently share similar structural properties
[74]. They are scale-free (with the fraction of network
nodes with k connections to other nodes following asymp-
totically a power law, P(k) ~ k− γ, for large k, with a power
parameter typically 2 < γ < 3 ) [75], and exhibit small-
world features (all nodes, even non-neighbors, can be
reached from every other node through a short sequence
of steps. The six degrees of separation theory suggests that
a chain of friendships between people can be made to
connect any two humans in a maximum of six connec-
tions [76]. For example, network link prediction aims to

estimate the chance of an interaction between entities and
assess the influence among nodes in the network at a pro-
spective time point [72]. Link prediction can also be used
to examine associations in networks and to develop net-
work decision support systems [77]. Network medicine is
another example of a successful graph theoretic applica-
tion [78], which uses functional interdependencies be-
tween cellular and molecular components to examine
disease networks in situations in which several genes,
multiple intracellular interactions and various tissue and/
or organ systems jointly explain human pathology. Such
networks enable the systematic exploration of molecular,
environmental and genetic complexity for specific disease
pathways and phenotypes.

Classification
A plethora of algorithms, techniques and software tools
are available for automated or semi-automated segmenta-
tion, clustering and classification of complex data [79–81].
Unsupervised machine-learning methods can be used to
uncover patterns (or item sets) in numeric or categorical
multivariate data [82, 83]. Bayes belief networks enable
prediction, classification and imputation of missing values,
and can be used to generate network representations of
conditional dependencies among a large number of vari-
ables [84]. Deep learning is useful for complex unlabeled
datasets and encapsulates machine-learning algorithms
for organizing the data hierarchically and exposing the
most important features, characteristics and explanatory

Fig. 2 Examples of rendering complex network data. a A heatmap of neuroimaging-derived measures associated with individual phenotypes and
genotypes [193]. b A Circos connectogram showing the associations (types and strengths) between genomics (single nucleotide polymorphisms)
and neuroimaging (morphometry measures of brain regions) biomarkers [204]
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variables as high-level graph nodes [85]. Ensemble methods
combine the results from many different algorithms that
vote in concert to generate increasingly accurate estimates.
Compared with the results of any single algorithm or tech-
nique across the space of all possible datasets, ensemble
methods provide highly effective predictive outputs [86].
Single-class classifiers are based on logistic regression and
enable us to assess whether a data point belongs to a par-
ticular class. These classifiers can be useful in studies in-
volving multiple cohorts in which the research interest is in
identifying only one of many possible outcomes [87–89].
Gaussian mixture modeling (GMM) represents an un-

supervised learning technique for data clustering that
uses expectation maximization to generate a linear mix-
ture of clusters of the full dataset on the basis of univari-
ate Gaussian (normal) distribution models for each
cluster [90, 91]. Fig. 3 illustrates an example of using
GMM to dynamically segment a 3D structural brain vol-
ume image into white matter, gray matter and cerebro-
spinal fluid. GMM algorithms typically output sets of
cluster attributes (means, variances and centroids) for
each cluster that enable us to quantify the differences
and similarities between different cohorts. Random forests
represent a family of decision-tree classification methods
that produce a ‘forest of trees’ representing alternative
models by iteratively randomizing one input variable at a
time and learning whether the randomization process ac-
tually produces a more or less accurate classification result
[92]. When the results are less or more optimal, compared
to the results of the previous iteration(s), the variable is ei-
ther removed from, or included into, the model at the
next iteration, respectively.
K-nearest neighbors (kNN) classification algorithms

[93–95] include the K-means methods for data clustering
[96] and K-itemsets techniques [97] for association mining.
These iterative methods partition a given dataset into a

fixed user-specified number of clusters, K, which can be
used to identify outliers as well as index, search, or catalog
high-dimensional data. The local linear embedding method
[98] is an example of a manifold learning method that aims
to discover real, yet low-dimensional, topological shapes or
patterns in the data [99]. Globally, the Euclidian represen-
tations of such shape manifolds can be warped and twisted.
However, their intrinsic metric is locally homeomorphic to
a lower-dimensional Euclidean distance measure [100]. For
instance, consider the embedding in 3D of the 2D manifold
representing the cortical surface of the human brain [101].
Cortical activation can be difficult to examine in 3D (be-
cause of the topology of the cortical surface); however,
using the 2D manifold coordinates we can represent acti-
vation as data attributes anchored at vertices on the cor-
tical surface. Another example is 3D data that live on a
complex 2D hyperplane representing the linear associa-
tions of three variables representing the three natural base
coordinates of the data [102, 103].
The different machine-learning (or statistical-learning)

methods [104] are divided into supervised approaches (in
which the goal is to use a training set that includes already
classified data to draw inference or classify prospective,
testing, data) [105] and unsupervised approaches (whose
main task is to identify structure, such as clusters, in un-
labeled data) [106]. Semi-supervised learning-based classifi-
cation methods attempt to balance performance and
precision using small sets of labeled or annotated data and
a much larger unlabeled data collection [107]. Support vec-
tor machines (SVM) are powerful supervised machine-
learning techniques for data classification [108] that use
binary linear classification. SVM partition data vectors into
classes on the basis of a priori features of the training data.
SVM operate by constructing an optimal hyperplane (i.e. a
maximum-margin hyperplane in a transformed feature
vector space) that divides the high-dimensional dataset into

Fig. 3 Example of using expectation maximization and Gaussian mixture modeling to classify stereotactic neuroimaging data [91]
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two subspaces to maximize the separation of the clusters
(for example, normal versus pathological cases). Boosting
machine-learning methods create highly accurate predic-
tion rules by combining many weak and inaccurate rules,
associations or affinities detected in a (large) dataset [14,
109]. Adaptive boosting is one example in which the algo-
rithm iteratively exploits misclassified examples from pre-
vious learning iterations and assigns them higher weights
in the next round, which explains the adaptive influence,
or iterative re-weighting, that is the signature feature of this
method [110].
As the complexity of machine-learning algorithms can

increase exponentially with the volume of the data, alter-
native model-based techniques, like generalized linear
models (GLMs), may be more appropriate as they are
computationally efficient and applicable for classifying
extremely large datasets, [111, 112]. Using parallel pro-
cessing [113], bootstrap sampling [114] and algorithm
optimization [112, 115] can substantially improve the ef-
ficiency of all machine-leaning methods [116]. Com-
pared with learning-based classification methods, such
as SVM and boosting, the efficiency of GLMs in analyz-
ing big data is rooted in their more simplistic linear
modeling and regression estimation that make use of ob-
served explanatory variables to predict the correspond-
ing outcome response variable(s).
Examples of unsupervised quantitative data explor-

ation and data mining algorithms for unlabeled datasets
include association mining [117], link analysis [118],
principal or independent component analyses (PCA/
ICA) [119, 120] and outlier detection [102]. PCA pro-
jects high-dimensional data into a subspace of reduced
dimension spanned by a family of orthonormal principal
component vectors that maximize the residual variance
not already present in the previous components. In prac-
tice, mutual orthogonality of the principal components
might be a too strong assumption. Additionally, PCA re-
lies on second-order statistics to estimate the covari-
ances between the observed variables, which implies that
the features that are generated might only be sensitive to
second-order effects. Correlation-based learning algo-
rithms such as PCA are designed to account for the
amplitude spectra of data but largely ignore their phase
spectra. This might limit their ability to characterize data-
sets with informative features that are modeled by higher-
order statistics (e.g. skewness, kurtosis, etc.). ICA provides
linear models for non-Gaussian data by generating com-
ponents that are statistically independent. ICA model rep-
resentations use blind source separation to capture the
core structure of the data, which facilitates feature extrac-
tion and cohort separation. ICA is computationally effi-
cient and applicable for data mining problems involving
recovering statistically independent features from data as-
sumed to represent unknown linear mixtures of attributes.

Association mining represents another class of machine-
learning algorithms applicable to large categorical data.
This approach is mostly focused on discovering frequently
occurring coherent associations among a collection of var-
iables and aims to identify such associations on the basis
of their frequencies of co-occurrence relative to random
sampling of all possibilities. Link analysis aims to assign
class labels to data elements on the basis of various link
characteristics derived from iterative classification, relax-
ation labeling or other methods. Using link-based distance
measures between entries we can generate associations ex-
pressing relative quantitative assessments of the between-
element link associations in the entire dataset, extrapolate
these patterns as network links, deduce novel plausible
links and mine the collection. Many outliner detection
methods exist for quantitative or qualitative detection of
measurement errors, atypical observations, abnormal
values or critical events [121].

Incompleteness
Missing data arise in most complex data-driven inquiries
[122]. To handle incomplete data, knowledge about the
cause of missingness is critical [123]. If data are missing
completely at random (MCAR), the probability of an ob-
servation being missing is the same for all entities [124].
In these situations, throwing out cases with missing data
does not bias the final scientific inference. However, if
the pattern of data missingness is not completely at ran-
dom, such as when non-response rates are different in
different subpopulations, the probability of observing an
entity might be variable and we need to model, impute
or correct for the missing values to obtain unbiased in-
ference. We can model the process of missingness via lo-
gistic regression, in which the outcome variable equals 1
for observed cases or 0 for unobserved entities. When an
outcome variable is missing at random (MAR), we can
still exclude the missing cases as unobserved; however, the
regression model should control for all the variables that
affect the probability of missingness (e.g. object character-
istics or subject demographics) [125]. Another common
cause for incomplete data is missingness that depends on
some specific unobserved predictors. Missingness not at
random (MNAR) suggests that the incompleteness of the
data depends on information that is not available, i.e., un-
observed information may predict the missing values
[126]. For instance, an aggressive cancer intervention can
have side effects that make patients more likely to discon-
tinue the treatment. Side effects and ‘discomfort’ associ-
ated with an intervention can be difficult to measure,
which can lead to incomplete data due to MNAR. In such
cases, we have to explicitly model the incompleteness of
the data to avoid inferential bias. In certain situations,
missingness can depend on the unobserved entity itself,
that is, the probability of missingness depends on the
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missing variable [127]. For example, if younger adults are
less likely to enroll in healthcare plans, case censoring
may be in effect due to aging and we must account for the
related missing-data by including more predictors in the
missing-data model – that is, bring the process of missing-
ness closer to MAR.

Exploratory data analytics
Countless examples show the equivalence of a ‘word’ to
a ‘thousand pictures’ [128] and its pseudo-converse that
equates a ‘picture’ to a ‘thousand words’ [129]. Protocols
for image parsing to text description (I2T) generate text
from still images (or video streams) [130]. Conversely,
exploratory data analytics transform text (tables) into
figures (images) that represent a synthesized view of the
information contained in the ASCII data. This duality of
representation of complex information is also directly
demonstrated by the homology between time-space and
frequency (Fourier) representations of multidimensional
data [131, 132]. Visual exploratory and explanatory ana-
lytics are critical components of any study of complex
data. Such tools facilitate the graphical ‘storytelling’ of
the properties and characteristics leading to, or explain-
ing, BHD discoveries.
Data profiling is a collection of exploratory data analytic

methods that facilitates quick and effective identification
of some basic data characteristics [133]. Profiling evaluates
the information content, intrinsic structure and quality of
the data and explores variable relationships within them.
Examining frequency distributions of different data ele-
ments provides insight into the type, center, spread and
shape of each variable. Cross-variable analysis can also ex-
pose embedded value dependencies and discover overlap-
ping or correlated features among the entities. Motion
charts [134] are an interactive mechanism for mapping
variables to different graphical widgets, which facilitates
the dynamic traversal (playing the chart) across a time di-
mension. Typically, motion charts facilitate on-the-fly
transformation of quantitative and qualitative information
contained in multivariate data to expose relevant and ac-
tionable knowledge about the interplays among multiple
data elements. ManyEyes data visualization [135] enables
users to generate graphical displays of their own data.
Socrata [136] enables the servicing and sharing of dynamic
data via a user-friendly and cost-effective interface. D3 is a
modern JavaScript platform for developing dynamic data
visualizations. The Cytoscape visualization suite [56] en-
ables exploration of network and tabular data. Several
dashboard platforms exist (e.g. Tableau [137], SOCR
MotionCharts [134] and SOCR Dashboard [138]) for in-
terrogation of complex, structured or unstructured multi-
source data. Data Wrangler [139] includes mechanisms
for manipulating, transforming, filtering and visualizing
incongruent data.

Choosing the right statistical methodology
In terms of selecting appropriate statistical tests, the
most important question is: ‘What are the main study
hypotheses and specific goals?’ In some cases no a priori
testable hypothesis exists; the investigator just wants to
‘see what is there’. For example, in a study investigating
the prevalence of a disease, there is no hypothesis to
test, and the size of the study is determined by how ac-
curately the investigator wants to determine prevalence.
If no hypothesis exists, then no corresponding statistical
test are conducted. It is important to decide a priori
which hypotheses are confirmatory (that is, whether we
are testing some presupposed relationship), and which
are exploratory (whether they are suggested by the data).
No single study can support a whole series of hypoth-
eses. There are a number of strategies to determine the
most appropriate statistical tests and often alternative
approaches need to be investigated. As there is no
unique, complete, and consistent ontological hierarchy
to guide practitioners, consultations with experts are
useful. An example of a table of frequently used study
designs and appropriate corresponding statistical ana-
lysis approaches is available online [140].

Predictive analytics
Large and complex clinical datasets require data-specific
and study-specific analytic protocols for managing raw
data, extracting valuable information, transforming the in-
formation to knowledge, and enabling clinical decision-
making and action that are evidence-based (Fig. 4) [138].
Various methods exist to predict future outcomes or fore-
cast trends using retrospective and current data. Predictive
analytics are useful in all scientific inquiries or research
explorations. Anticipating future failures or systemic
changes using multi-source data streams that generate
hundreds or thousands of data points is critical in
decision-making, whether when buying a stock, preparing
for natural disasters, forecasting pandemics, projecting the
course of normal or pathological aging or anticipating the
behavior of social groups. Predictive analytics aim to un-
cover patterns and expose critical relations in phenomena
using the associations between data elements detected in
the observed process. Two generic types of predictive ana-
lytics techniques exist: model-based or model-free. Pre-
dictive time series analyses can use moving averages to
build a model using historical or training data and ex-
trapolate the trend predicted by the model into the future.
Multivariate regression methods [141, 142] represent vari-
able interdependencies between predictors and responses
in terms of some base functions (e.g. polynomials) whose
coefficients capture the influence of all variables on the
outcomes and facilitate forward predictions. Alternatively,
machine-learning techniques [143], classification theory
[144] and network analytics [145, 146] can be used for
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model-free (semi) unsupervised data mining, hierarchical
clustering [147], pattern recognition [148], fuzzy cluster-
ing [149] or trend identification [150]. The type of out-
come variables affects the analytical techniques used to
study the process. For example, multilinear regression
[151] is applicable for analyzing continuous outcome vari-
ables, whereas random forest classification [92] and logis-
tic regression [152] can be applied to analyze discrete
outcome variables.
Contemporary data science and analytic research de-

mand innovative predictive forecasting and statistical
methods that are capable of dealing with the complexity
of big data that are prevalent in biomedical studies [153,
154]. Classical statistical methods are based on conven-
tional complete data and specific a priori statistical signifi-
cance assumptions. Scientific inference often depends on
small data samples from a specific population with some
assumptions on their distribution. To examine the signifi-
cance of a particular relationship, statistical results are
typically contrasted against random chance. Finally, data-
driven findings might be generalized as a conclusion ap-
plied to the entire (unobserved) population. There are
substantial differences in the sample attributes of trad-
itional studies and big data studies. The latter are charac-
terized by incompleteness, incongruency, multi-source
elements, multiple scales, excessive heterogeneity, and
enormous size. Big data samples frequently represent a
substantial fraction of the entire population [155, 156].
This process trades off exactness and stability with com-
pleteness and consistency of the proxy observations. Thus,
in BHD studies, the classical notion of statistical signifi-
cance morphs into scientific inference that is based on
joint modeling of all elements of big data using explora-
tory, classification, and pattern-tracking methods. Other
essential distinctions exist between standard statistical

analysis methods and advanced data analytics techniques
[157]. Computational efficiency, data management, valid-
ation and reproducibility need Big-Data-specific, agile and
scalable algorithms and models to obtain reliable inference
on complex and heterogeneous data. The heterogeneity
[158], noise concentration [3], spurious correlations [159],
incidental endogeneity (hidden correlations between data
elements and error terms) [160], and variable latency
[161] that characterize big data also demonstrate the
major challenges associated with handling, modeling and
information extraction of BHD.
Data heterogeneity reflects the unavoidable differences

in population characteristics, data formatting and type
variability [162]. Big data always include heterogeneous
data elements where small sub-samples might capture
specific cohorts that include outliers or extreme data. An
important property of big data that makes them useful is
the population coverage of the data, asymptotically with
the increase of the sample size. This enables us to model,
stratify, and understand the heterogeneity of multiple sub-
cohorts in the population. At the same time, noise con-
centration may creep in due to the aggregation of hetero-
geneous data elements and the accumulation of individual
error terms into the joint big data analysis. Developing
predictive big data analytic models requires simultaneous
estimation of multiple parameters, model coefficients or
likelihoods. In this joint processing, error estimates might
compile (noise aggregation can be linear or non-linear in
terms of the number of variables) and thus dominate the
variable effect sizes or obfuscate the true effect of a par-
ameter included in the model.
Spurious effects refer to data elements that are not asso-

ciated in reality but that, owing to data complexity, are
falsely determined to be significantly correlated [163]. For
example, correlation coefficients between independent

Fig. 4 A schematic illustrating the big healthcare data analytic pipeline in a neuroscientific context, including data management, mapping, processing,
interpretation and inference [138]
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random variables can increase with the increase of the
data size, incongruences in noise levels or the presence of
latent variable effects. Another important factor in all Big
Data analytic studies is the ‘curse of dimensionality’, which
arises in dealing with high-dimensional data. This paradox
is not present in traditional low-dimensional datasets. In
high-dimensions many numerical analyses, data sampling
protocols, combinatorial inferences, machine learning
methods, or data managing processes are susceptible to
the ‘curse of dimensionality’. Increases of data dimension-
ality (including a larger number of data elements) leads to
parallel, and faster, increases of the space volume contain-
ing the observed data, thus, the actual points of data into
the high-dimensional space appear to be drifting apart
(distances between data points increases). The sparsity be-
tween points, even for big data, affects all quantitative
analytic methods, as the corresponding statistical infer-
ence depends explicitly on the stability of ‘distance’ met-
rics [164]. The reliability of the statistical inference relies
on balancing the volume of data (number of observation
points) that needs to grow exponentially with the number
of dimensions in which the data are embedded. In a high-
dimensional space, objects may appear to be farther apart
and artificially dissimilar, which affects data structuring,
organization, modeling and inference. However, in big
data studies, this problem of increased dimensionality
and the associated challenges of interpreting data from
multiple sources trades off with the potential for re-
duced bias, increased level of unique and heteroge-
neous population characteristics captured and broader
interpretation of results.
Incidental endogeneity is a property that violates the

common regression technique assumption that requires
the independent (explanatory) variables to be independent
of the error term (model residuals) [159]. Many paramet-
ric statistical methods depend on this assumption, as pres-
ence of incidental endogeneity allows potentially strong
dependences between some predictors and the residuals
that render the techniques possibly unreliable or under-
powered. In traditional studies involving standard datasets
the exogeneity assumption is usually met, that is, no acute
incidental endogeneities occur. However, in BHD analyses,
the expectation is that incidental endogeneity may be ubi-
quitous [165]. A difference exists between spurious effects
and incidental endogeneity: the former refers to pseudo-
random relationships, whereas the latter refers to natural
intrinsic associations between the explanatory variables
and the model residual error term.

Data harmonization and fusion
When interpreting the information content of large and
heterogeneous data, the processes of extraction of pat-
terns, trends and associations demand considerable in-
sights, computational power and analytical tools. Raw and

derived data might come from multiple unrelated sources,
and latent effects or multivariate correlations might com-
plicate data interrogation. Traditional databases have bot-
tlenecks in ingesting, retrieving and processing vast
amounts of heterogeneous data. Modern structured query
language (SQL) and NoSQL databases [166, 167], plat-
forms for extract-transform-load processing [168] and
cloud-based services [169–171] are improving the human
and machine interfaces to BHD. Incongruent data often
arrive from disparate digital sources, which can represent
orthogonal, co-linear, or causally related information.
Solid foundation for analytical and computational repre-
sentation of big data is important. Alternative data
representation schemes, canonical models or reference
frameworks that facilitate data harmonization and integra-
tion across different granularity scales, encoding proto-
cols, measurement types, phenotypes and formats are
being developed [172, 173]. In practice, data incongruity
can be due to the lack of such a common data representa-
tion architecture. Incompatibility of data elements is ubi-
quitous and unavoidable in most studies of real health
data that rely on data-driven inference or evidence-based
decision-making. Variable transformations, data imputa-
tions, low-dimensional modeling, and joint analyses all de-
pend on a common scheme for effective representation of
complex BHD. The implicit data harmonization necessary
to enable subsequent data integration and processing is
predicated on successful wrangling and fusion of incon-
gruous data elements.

Services and infrastructure
The MapReduce model from Google provides an attractive
mechanism for parallel processing and ad hoc inference for
large and heterogeneous datasets [174, 175]. A pair of func-
tions, a mapper and a reducer, split real-world computa-
tional tasks (e.g. data cleaning, modeling, machine learning,
filtering, aggregation, merging, etc.) into manageable scal-
able pieces that can be independently completed in parallel
using separate parts of the (Big) data. These tasks could be
performed on separate (but connected) machines even
under failing node conditions. Hadoop is an open-source
implementation of MapReduce [176]. The open-source
Apache http://spark.apache.org/ enables distributed comput-
ing for large and complex datasets. Spark and MapReduce
are linearly scalable and fault-tolerant; however, Spark can
be up to 100 times faster for certain applications and pro-
vides rich and intuitive machine interfaces (e.g. application
program interfaces in Python, Java, Scala and R) to support
data abstraction and a wide spectrum of computing-
intensive tasks, interactive queries, streaming, machine
learning and graph processing.
PMML [177] is an XML-based language for describ-

ing, assembling and sharing predictive models learned
within a data mining process that facilitates computational
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Fig. 5 Two alternative end-to-end cloud-based solutions to the Trans-Proteomic Pipeline (TPP) protocol that apply advanced data modeling, processing
and visualization methods to process mass spectroscopy datasets using multiple cloud web services. a Implementation of the TPP computational
protocol in the Pipeline environment. b Implementation of the TPP computational protocol in the Globus Galaxies environment [205]
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processing (machine-to-machine communication and dis-
tributed manipulation). DataMining-as-a-Service (DMaaS)
[178], DecisionScience-as-a-Service (DSaaS) [179],
Platform-as-a-Service (PaaS) [180], Infrastructure-as-a-
Service (IaaS) [181] and Software-as-a-Service (SaaS)
[182] are all examples of cloud-based data, protocol and
infrastructure services enabling reliable, efficient and dis-
tributed data analytics. R packages [124, 147], KNIME
[183], WEKA [184], RapidMiner [185] and Orange [186]
include hundreds of powerful open-source algorithms and
software tools for high-throughput machine learning, data
mining, exploration, profiling, analytics and visualization.
Figure 5 provides an example of a high-throughput

end-to-end computational protocol in which several of
such cloud web services are used. This example illus-
trates the implementation of the Institute for Systems
Biology Trans-Proteomic Pipeline (TPP), which applies
advanced data modeling, processing and visualization to
the search and process datasets using multiple engines
[187]. The dual Pipeline-based and Galaxy-based solu-
tions are alternative service-oriented protocols that yield
the same results using vastly different computational
platforms. Many similar examples that use the Imaging
Data Archive services [188, 189], Parkinson’s Progression
Markers Initiative services [190, 191], Galaxy computa-
tional services [192], Pipeline client-server infrastructure
[45, 193, 194] and proteomics services [195] are available
online [196, 197].
Various national and international big data science

initiatives have emerged as a response to sizeable finan-
cial support from government agencies, philanthropic
organizations and industry partners to develop plat-
forms enabling ‘open-science’, data sharing, collabora-
tive development and transdisciplinary engagement. For
example, in the USA, the National Institutes of Health
funded 11 National big data to Knowledge Centers
(BD2K) [198] and several satellite BD2K activities. In
Europe, the Virtual Physiological Human initiative
[199], the European Life-sciences Infrastructure for
Biological Information [200] and the Translational In-
formation & Knowledge Management Services [201]
have secured resources to build and use open-source
translational data, tools and services (e.g. tranSMART
[202]) to tackle challenging problems.

Conclusions
In the biomedical and healthcare community, managing,
processing and understanding BHD pose substantial chal-
lenges that parallel enormous opportunities in understand-
ing human conditions in health and disease, across
location, time, and scale. Although no unique blueprint or
perfect roadmap exist, the characteristics of the data, the
underlying model assumptions, the computational infra-
structure demands, and the application scope all have vital

roles in the choices about how to guide, handle and analyze
such complex data. The field of Big-Data-driven research
discoveries bridges various scientific disciplines, advanced
information and communication technologies, and mul-
tiple sources, and is rapidly evolving. We have outlined big
data challenges, identified big data opportunities and pre-
sented modeling methods and software techniques for
blending complex healthcare data and contemporary scien-
tific approaches. We give examples of several techniques
for processing heterogeneous datasets using cloud services,
advanced automated and semi-automated techniques and
protocols for open-science investigations. New technolo-
gies are still necessary to improve, scale and expedite the
handling and processing of large data that are increasing in
size and complexity [193]. At the same time, substantial
methodological progress, powerful software tools and dis-
tributed service infrastructure are already in place to en-
able the design, simulation and productization of the
future computational resources necessary to support the
expected avalanche of data [203]. Big data analytics are
likely to encounter some setbacks and some great advances
in the next decade. Additional public, private and institu-
tional investments in data acquisition, research and devel-
opment, and computational infrastructure, along with
education, will spur the involvement of bright young minds
to tackle the huge big data challenges, reap the expected
information benefits and assemble knowledge assets. Bal-
ancing proprietary, open-source and community commons
developments will be essential for broad, reliable, sustain-
able and efficient development efforts. The influence of big
data will go beyond financing, high-tech and biomedical
research. Big data will be likely to touch every sector of the
economy and their signature feature will be rapid on-
demand team science.
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