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Abstract

Background: Skull-stripping is the procedure of removing non-brain tissue from anatomical MRI data. This procedure
can be useful for calculating brain volume and for improving the quality of other image processing steps. Developing
new skull-stripping algorithms and evaluating their performance requires gold standard data from a variety of different
scanners and acquisition methods. We complement existing repositories with manually corrected brain masks for 125
T1-weighted anatomical scans from the Nathan Kline Institute Enhanced Rockland Sample Neurofeedback Study.

Findings: Skull-stripped images were obtained using a semi-automated procedure that involved skull-stripping the
data using the brain extraction based on nonlocal segmentation technique (BEaST) software, and manually correcting
the worst results. Corrected brain masks were added into the BEaST library and the procedure was repeated until
acceptable brain masks were available for all images. In total, 85 of the skull-stripped images were hand-edited and 40
were deemed to not need editing. The results are brain masks for the 125 images along with a BEaST library for
automatically skull-stripping other data.

Conclusion: Skull-stripped anatomical images from the Neurofeedback sample are available for download from the
Preprocessed Connectomes Project. The resulting brain masks can be used by researchers to improve preprocessing

of the Neurofeedback data, as training and testing data for developing new skull-stripping algorithms, and for
evaluating the impact on other aspects of MRI preprocessing. We have illustrated the utility of these data as a
reference for comparing various automatic methods and evaluated the performance of the newly created library on

independent data.
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Data description

One of the many challenges facing the analysis of mag-
netic resonance imaging (MRI) data is achieving accurate
brain extraction from the data. Brain extraction, also
known as skull-stripping, aims to remove all non-brain
tissue from an image. This is commonly a preliminary
step in preprocessing and the quality of its result affects
the subsequent steps, such as image registration and
brain matter segmentation. Many challenges surround
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the process of brain extraction. The manual creation and
correction of brain masks is tedious, time-consuming,
and susceptible to experimenter bias. On the other hand,
fully automated brain extraction is not a simple image
segmentation problem. Brains differ in orientation and
morphology, especially pediatric, geriatric, and patholog-
ical brains. In addition, non-brain tissue may resemble
brain in terms of voxel intensity. Differences in MRI scan-
ner, acquisition sequence, and scan parameters can also
have an effect on automated algorithms due to differ-
ences in image contrast, quality, and orientation. Image
segmentation techniques with low computational time,
high accuracy, and high flexibility are extremely desirable.

Developing new automated skull-stripping methods,
and comparing these with existing methods, requires large

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13742-016-0150-5-x&domain=pdf
http://orcid.org/0000-0002-4950-1303
mailto: ccraddock@nki.rfmh.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Puccio et al. GigaScience (2016) 5:45

quantities of gold standard skull-stripped data acquired
from a variety of scanners using a variety of sequences
and parameters. This is due to the variation in perfor-
mance of algorithms using different MRI data. Reposito-
ries containing gold standard skull-stripped data already
exist: the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [1]; BrainWeb: Simulated Brain Database (SBD)
[2]; the Internet Brain Segmentation Repository (IBSR)
at the Center for Morphometric Analysis [3]; the LONI
Probabilistic Brain Atlas (LPBA40) at the UCLA Lab-
oratory of Neuro Imaging [4]; and the Open Access
Series of Imaging Studies (OASIS) [5], the last of which
is not manually delineated but has been used as gold
standard data [6, 7]. We extend and complement these
existing repositories by releasing manually corrected skull
strips for 125 individuals from the Nathan Kline Insti-
tute (NKI) Enhanced Rockland Sample Neurofeedback
Study (NFB). These are the first 125 participants who fin-
ished the entire 3-day protocol, consented to have their
data shared, and were not excluded from data sharing
for having an incidental finding during neuroradiological
review.

Data acquisition

The repository was constructed from defaced and
anonymized anatomical data downloaded from the NFB
[8]. The NFB is a 3-visit study that involves a deep phe-
notypic assessment on the first and second visits, a 1-h
connectomic MRI scan on the second visit, and a 1-h neu-
rofeedback scan on the last visit. Up to 3 months may have
passed between the first and last visits. The 125 partici-
pants included 77 females and 48 males in the 21-45 age
range (average: 31, standard deviation: 6.6).

Consistent with the the Research Domain Criteria
(RDoC) [9], the goal of the NFB study is to examine default
network regulation across a range of clinical and sub-
clinical psychiatric symptoms. To preserve this variance,
while being representative of the general population, a
community-ascertained sample was recruited with min-
imally restrictive psychiatric exclusion criteria [8]. Only
the most severe illnesses were screened out, excluding
those who were unable to comply with instructions, tol-
erate the MRI, and participate in the extensive phenotyp-
ing protocol. As a result, 66 of the participants had one
or more current or past psychiatric diagnosis as deter-
mined by the structured clinical interview for the DSM-IV
(SCID) [10] (see Table 1). No brain abnormalities or inci-
dental findings were present in the images, as determined
by a board-certified neuroradiologist. None of the par-
ticipants had any other major medical condition such as
cancer or AIDS.

Anatomical MRI data from the third visit of the NFB
protocol were used to build the Neurofeedback Skull-
stripped (NFBS) repository. MRI data were collected on
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Table 1 Neurofeedback participant diagnoses
Diagnosis #
No diagnosis or condition on Axis | 59
Major depressive disorder, past 26
Alcohol abuse, past 21
Cannabis abuse, current 1
Cannabis dependence, past 11
Attention-deficit/hyperactivity disorder, current 10
Alcohol dependence, past 5
Posttraumatic stress disorder, current 5
Specific phobia, past 5
Generalized anxiety disorder, current 4
Cocaine abuse, past 2
Cocaine dependence, past 2
Hallucinogen abuse, past 2
Agoraphobia without history of panic disorder, current 2
Anorexia nervosa, past 2
Anxiety disorder not otherwise specified, current 2
Panic disorder with agoraphobia, past 2
Panic disorder without agoraphobia, past 2
Social phobia current 2
Alcohol abuse, current 1
Amphetamine dependence, past 1
Bereavement 1
Body dysmorphic disorder, current 1
Bulimia nervosa, current 1
Delusional disorder mixed type 1
Eating disorder not otherwise specified, past 1
Hallucinogen dependence, past 1
Major depressive disorder, current 1
Obsessive-compulsive disorder, current 1
Opioid abuse, past 1
Phencyclidine abuse, past 1
Sedative, hypnotic, or anxiolytic dependence, past 1
Trichotillomania 1

a 3 T Siemens Magnetom TIM Trio scanner (Siemens
Medical Solutions USA: Malvern PA, USA) using a 12-
channel head coil. Anatomical images were acquired at
1 x 1 x 1 mm?® resolution with a 3D T1-weighted
magnetization-prepared rapid acquisition gradient-echo
(MPRAGE) [11] sequence in 192 sagittal partitions each
with a 256 x 256 mm? field of view (FOV), 2600 ms
repetition time (TR), 3.02 ms echo time (TE), 900 ms
inversion time (TI), 8° flip angle (FA), and generalized
auto-calibrating partially parallel acquisition (GRAPPA)
acceleration [12] factor of 2 with 32 reference lines.
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Anatomical data were acquired immediately after a fast
localizer scan and preceded the collection of a variety of
other scans [13], whose description is beyond the scope of
this report.

Brain mask definition

Many researchers differ on the standard for what to
include and exclude from the brain. Some brain extrac-
tion methods, such as brainwash, include the dura mater
in the brain mask to use as a reference for measurements
[14]. The standard we used was adapted from Eskildsen
et al. (2012) [15]. Non-brain tissue is defined as skin,
skull, eyes, dura mater, external blood vessels and nerves
(e.g., optic chiasm, superior sagittal sinus, and transverse
sinus). Cerebrum, cerebellum, brainstem, and internal
vessels and arteries are included in the brain, along with
cerebrospinal fluid (CSF) in ventricles, internal cisterns,
and deep sulci.

NFBS repository construction

The BEaST method (brain extraction based on nonlocal
segmentation technique) was used to initially skull-strip
the 125 anatomical T1-weighted images [15]. This soft-
ware uses a patch-based label fusion method that labels
each voxel in the brain boundary volume by comparing
it to similar locations in a library of segmented priors.
The segmentation technique also incorporates a multi-
resolution framework in order to reduce computational
time. The version of BEaST used was 1.15.00 and our
implementation was based on a shell script written by
Qingyang Li [16]. The standard parameters were used in
the configuration files and beast-library-1.1 (which con-
tains data from 10 young individuals) was used for the
initial skull-strip of the data. Before running mincbeast,
the main segmentation script of BEaST, the anatomical
images were normalized using the beast normalize
script. mincbeast was run using the probability filter
setting, which smoothed the manual edits, and the fill set-
ting, which filled any holes in the masks. The failure rate
for masks using BEaST was similar to that of the published
rate of approximately 29 % [15]. Visual inspection of these
initial skull-stripped images indicated whether additional
edits were necessary.

Manual edits were performed using the Freeview visu-
alization tool from the FreeSurfer software package [17].
The anatomical image was loaded as a track volume and
the brain mask was loaded as a volume. The voxel edit
mode was then used to include or exclude voxels in the
mask. As previously mentioned, all exterior non-brain tis-
sue was removed from the head image, specifically the
skull, scalp, fat, muscle, dura mater, and external blood
vessels and nerves (see Fig. 1). Time spent editing each
mask ranged from 1-8 h, depending on the quality of
the anatomical image and the BEaST mask. Afterwards,
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After manual edit

Before manual edit

Coronal
view

Fig. 1 Manual Editing. Axial and coronal slices in the AFNI viewer of
the brain mask and image pair, before and after manual editing in
Freeview. The anatomical image was loaded into the viewer as a
grayscale image. The mask, which can be seen in a transparent red,
was loaded as an overlay image

manually edited masks were used create a NFB specific
prior library for BEaST. This iterative bootstrapping tech-
nique was repeated until approximately 85 of the datasets
were manually edited and all skull-strips were considered
acceptable.

For each of the 125 subjects, the repository contains the
de-faced and anonymized anatomical T1-weighted image,
skull-stripped brain image, and brain mask. Each of these
are in compressed NIfTT file format (.nii.gz). The size of
the entire data set is around 1.9 GB. The BEaST library
created using these images is also available.

Data validation

The semi-automated skull-stripping procedure was
repeated until all brain masks were determined to be
acceptable by two raters (BP and ET). Once this was
completed, the brain masks were used as gold standard
data for comparing different automated skull-stripping
algorithms. Additionally, we evaluated the performance
of the newly created BEaST library by comparing it to
other skull-stripping methods on data from the IBSR [3]
and the LPBA40 [4].

Skull-stripping algorithms

Many skullstripping algorithms have been developed
(6,7, 14, 18—22], but we focused on FSL’s Brain Extraction
Tool (BET) [23], AFNTI’s 3dSkullStrip [24], and FreeSurfer’s
Hybrid Watershed Algorithm (HWA) [25] based on their

popularity.
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e BET is an algorithm incorporated in the FSL software
that is based on a deformable model of the surface of
the brain [23]. First, an intensity histogram is used to
find the center of gravity of the head. Then a
tessellated sphere is initialized around the center of
gravity and expanded by locally adaptive forces. The
method can also incorporate T2-weighted images to
isolate the inner and outer skull and scalp. The bias
field and neck setting (bet -B) was used since the
anatomical images contained the subjects’ necks. The
version of FSL used was 5.0.7.

e 3dSkullStrip is a modified version of BET that is
incorporated in the AFNI toolkit [24]. The algorithm
begins by preprocessing the image to correct for
spatial variations in image intensity and repositioning
the brain to roughly the center of the image. Then a
modified algorithm based on BET is used to expand a
mesh sphere until it envelops the entire brain surface.
Among the modifications are procedures to avoid the
eyes and ventricles and operations to avoid cutting
into the brain. The version of the AFNI toolkit used
was AFNI_2011_12_21_1014.

e HWA is a hybrid technique that uses a watershed
algorithm in combination with a deformable surface
algorithm [25]. The watershed algorithm is first used
to create an initial mask under the assumption of the
connectivity of white matter. Then a deformable
surface model is used to incorporate geometric
constraints into the mask. The version of FreeSurfer
used was 5.3.0.

Data analysis

To illustrate the use of the NFBS as testing data, it was
used to compare the performance of BET, 3dSkullStrip
and HWA for automatically skull-stripping the origi-
nal NFB data. In a second analysis we compared the
performance of the NFBS BEaST library to the default
BEaST library and the three aforementioned methods.
Each of the methods was used to skull-strip data from
the IBSR (version 2.0) and LPBA40 [3, 4]. To ensure con-
sistent image orientation across methods and datasets,
they were all converted to LPI orientation! using AFNI’s
3dresample program [24]. Additionally, a step function
was applied to all of the outputs using AFNI’s 3dcalc
tool to binarize all of the generated masks.

The performance of the various methods was compared
using the Dice similarity [26] between the mask gener-
ated for an image and its corresponding reference (‘gold
standard’) mask. Dice was calculated using: D = 2 - |[A N
B|/(|A]+ |B|), where A is the set of voxels in the test mask,
Bis the set of voxels in the gold standard data mask, ANBis
the intersection of A and B, and | - | is the number of voxels
in a set. Dice was implemented in custom Python scripts
that used the NiBabel neuroimaging package [27] for data
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input. Dice coefficients were subsequently graphed as box
plots using the ggplot2 package [28] for the R statistical
computing language [29].

Results
Figure 2 displays box plots of the Dice coefficients that
result from using NFBS as gold standard data. The results
indicate that 3dSkullStrip performed significantly better
than the two alternative methods, with HWA coming in
second. In particular, average Dice similarity coefficients
were 0.893 £ 0.027 for BET, 0.949 + 0.009 for 3dSkull-
Strip, and 0.900 £ 0.011 for HWA. It is perhaps worth
noting that BET, the method that performed worst on the
NEBS library, took substantially more time to run (25 min)
compared to 3dSkullStrip (2 min) and HWA (1 min).
Switching now from using NFBS as the repository of
gold standard skull-stripped images to using the IBSR
and LPBA40 repositories as the source of gold standard
images, Fig. 3 shows box plots of the Dice similarity
coefficients for BET, 3dSkullStrip, HWA, BEaST using
beast-library-1.1, and BEaST using NFBS as the library of
priors. For IBSR, 3dSkullStrip performs better than BET
and HWA, similarly to NFBS. However, for LPBA40, BET
performs much better than the other two algorithms. The

0.94 -

0.90 =

Dice Similarity

0.86 —

0.82 | | |
3dSkullStrip BET HWA

Algorithm

Fig. 2 Comparison of methods on NFBS. Boxplots of Dice coefficients
measuring the similarity between masks generated from each image
using BET, 3dSkullStrip, HWA, and the image’s corresponding
reference brain masks
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Fig. 3 Dice coefficients for IBSR and LPBA40. Box plot of Dice
coefficients for BET, 3dSkullStrip, HWA, BEaST using beast-library-1.1,
and BEaST using NFBS as the library of priors. One subject was left out
of the Dice calculation for each of the following: BEaST with
beast-library-1.1 on IBSR (IBSR_11), BEaST with beast-library-1.1 on
LPBA40 (S35), and BEaST with NFBS on LPBA40 (S35)

BEaST method was also applied to the anatomical data in
these repositories using two different methods: first with
the original beast-library-1.1 set as the prior library, and
second with the entire NFBS set as the prior library.

For the BEaST method, using NFBS as the prior library
resulted in higher average Dice similarity coefficients and
smaller standard deviations?. Differences in Dice coeffi-
cients between datasets may be due the size and quality of
the NFB study, as well as the pathology and age of the par-
ticipants. In particular, the NFBS library of priors reflects
amuch wider range of individuals than does beast-library-
1.1, which only contains 10 young individuals. There also
may be differences in the standard of the masks, such as
length of brainstem and inclusion of exterior nerves and
sinuses.

Placing our results in the context of other skull-stripping
comparisons, differences between the Dice coefficients
reported here and values already published in the litera-
ture may be due to the version and implementation of the
skull stripping algorithms, a possibility that has received
support in the literature [6]. These differences may also
result from our application of AFNT’s 3dcalc step function
to the skull-stripped images in order to get a value deter-
mined more by brain tissue and less influences by CSE.
As the NFBS dataset is freely accessible by members of
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the neuroimaging community, these possibilities may be
investigated by the interested researcher.

Importance for the neuroimaging community

In summary, we have created and shared the NFBS
repository of high quality, skull-stripped T1-weighted
anatomical images that is notable for its quality, its het-
erogeneity, and its ease of access. The procedure used to
populate the repository combined the automated, state-
of-the-art BEaST algorithm with meticulous hand editing
to correct any residual brain extraction errors noticed on
visual inspection. The manually corrected brain masks
will be a valuable resource for improving the quality of
preprocessing obtainable on the NFB data. The corre-
sponding BEaST library will improve skull-stripping of
future NFB releases and may outperform the default
beast-library-1.1 on other datasets (see Fig. 3). Addi-
tionally, the corrected brain masks may be used as gold
standards for comparing alternative brain extraction algo-
rithms, as was illustrated in our preliminary analysis (see
Fig. 2).

The NFBS repository is larger and more heterogeneous
than many comparable datasets. It contains 125 skull-
stripped images, is composed of images from individuals
with ages ranging from 21-45, and represents individu-
als diagnosed with a wide range of psychiatric disorders
(see Table 1). This variation is a crucial feature of NFBS,
as it accounts for more than the average brain. Ultimately,
this variation may prove useful for researchers interested
in developing and evaluating predictive machine learning
algorithms on both normal populations and those with
brain disorders [30].

Finally, the repository is completely open to the neuro-
science community. NFBS contains no sensitive personal
health information, so researchers interested in using it
may do so without submitting an application or signing
a data usage agreement. This is in contrast to datasets
such as the one collected by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [1]. Researchers can use
ADNI to develop and test skull-stripping algorithms [21],
but in order to do so must first apply and sign a data usage
agreement, which bars them from distributing the results
of their efforts. Thus, we feel that NFBS has the potential
to accelerate the pace of discovery in the field, a view that
resonates with perspectives on the importance of mak-
ing neuroimaging repositories easy to access and easy to
use [31].

Endnotes

! This refers to the manner in which the 3D image
data are saved in the file. With LPI orientation, the voxel
at memory location (0,0,0) is located at the leftmost,
posterior, inferior voxel in the image. As the indices
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increase, they scan the voxels from left-to-right, along
lines that advance from posterior-to-anterior, and planes
that advance from inferior-to-superior. Additional details
concerning the orientation of MRI images are available
online [32].

2BEaST was unable to segment 1 subject, IBSR_11, in
IBSR, only when using beast-library-1.1. For LPBA40,
BEaST was also unable to segment 1 subject, S35, when
using beast-library-1.1 and NFBS. These subjects were left
out of the Dice calculations.
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