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Abstract

Background: Geckos are among the most species-rich reptile groups and the sister clade to all other lizards and snakes.
Geckos possess a suite of distinctive characteristics, including adhesive digits, nocturnal activity, hard, calcareous eggshells,
and a lack of eyelids. However, one gecko clade, the Eublepharidae, appears to be the exception to most of these ‘rules’
and lacks adhesive toe pads, has eyelids, and lays eggs with soft, leathery eggshells. These differences make eublepharids
an important component of any investigation into the underlying genomic innovations contributing to the distinctive
phenotypes in ‘typical’ geckos.

Findings: We report high-depth genome sequencing, assembly, and annotation for a male leopard gecko, Eublepharis
macularius (Eublepharidae). Illumina sequence data were generated from seven insert libraries (ranging from 170 to
20 kb), representing a raw sequencing depth of 136X from 303 Gb of data, reduced to 84X and 187 Gb after filtering.
The assembled genome of 2.02 Gb was close to the 2.23 Gb estimated by k-mer analysis. Scaffold and contig N50 sizes
of 664 and 20 kb, respectively, were comparable to the previously published Gekko japonicus genome. Repetitive
elements accounted for 42 % of the genome. Gene annotation yielded 24,755 protein-coding genes, of which 93 %
were functionally annotated. CEGMA and BUSCO assessment showed that our assembly captured 91 % (225 of 248) of
the core eukaryotic genes, and 76 % of vertebrate universal single-copy orthologs.

Conclusions: Assembly of the leopard gecko genome provides a valuable resource for future comparative genomic
studies of geckos and other squamate reptiles.

Keywords: Gekkota, Leopard gecko, Eublepharis macularius, Genome sequencing, Assembly

Data description
Sample collection and sequencing
Genomic DNA was extracted from the tail tissue of a
male leopard gecko (Eublepharis macularius: NCBI
taxonomy ID 481883; specimen ID TG1477) (Fig. 1). All
tissues were collected in accordance with University of
Minnesota animal use protocols 0810A50001 and
1108A03545. This animal was captive born from 30+
generations of inbreeding of a strain originating from
animals of Indian origin at the Woodland Park Zoo
(Seattle) and imports from Pakistan at the National
Zoo (Washington, DC) [1]. A total of seven paired-end

libraries with a gradient insert size ranging from 170 to
20 kb were constructed and sequenced on an Illumina
HiSeq 2000 platform according to the manufacturer’s in-
structions (Illumina, San Diego, California, USA). For long
insert size libraries (2, 5, 10 and 20 kb), the sequenced
read length was 49 bp, while for short insert size libraries
(170, 500 and 800 bp), the sequenced read lengths were
100 and 150 bp (Table 1). A total of 303 Gb (136X) raw
sequences were eventually obtained (Table 1). Before
assembly, strict quality control was performed for raw
reads using SOAPfilter, a software application in the
SOAPdenovo package [2], which included removing low-
quality reads and duplicate reads arising from PCR ampli-
fication during library construction. Sequencing errors
were corrected using the k-mer frequency method in
SOAPec (version 2.02) [2]. After filtering and correction,
187 Gb (84X) high-quality sequences were obtained for
genome assembly (Table 1).
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Genome assembly
We first performed a 17-mer analysis [2] to estimate
the leopard gecko genome size using 54 Gb clean se-
quences from 170 and 500 bp insert size libraries.
Briefly, reads were divided into sliding short sequences
of 17 bp, overlapping by 16 bp, with the exception of
the first base pair. The count distribution of 17-mers
followed a Poisson distribution (Additional file 1). The
genome size was estimated as 2.23 Gb for E. macular-
ius by dividing the total number of 17-mers by the peak
of distribution (Table 2).
We then assembled a high-quality leopard gecko gen-

ome using SOAPdenovo (version 2.0) [2] in three steps:
contig construction, scaffolding, and gap filling. In the
contig construction step, SOAPdenovo was used to a
de Bruijn graph by dividing high-quality reads from
short insert libraries into kmers in which paired-end
information was ignored, and kmers were then merged,
tips clipped, bubbles merged, and low coverage links
removed. Next, contigs displaying unambiguous con-
nections in de Bruijn graphs were collected. A series of
kmer lengths were tested and a 33-mer was selected to
generate a contig assembly with the longest N50 value.
In the scaffolding step, reads from both small and large

insert libraries were mapped to contig sequences to
construct scaffolds using distance information from
read pairs, with the requirement that at least three read
pairs were used to form a reliable connection between
two contigs. To close intra-scaffold gaps (the gap filling
step), overlapping paired-end reads from the 170 bp
insert library were first connected using COPE [3], then
Kgf [2] was employed to close gaps using these con-
nected reads together with reads from other short
insert size libraries. An additional local assembly for
reads with one end of a read pair uniquely aligned to a
contig and the other end located within the gap was
performed using GapCloser [2]. The end result was a
leopard gecko genome assembly with a total length of
2.0 Gb and scaffold and contig N50s of 664 and 20 kb,
respectively, which is comparable to the previously
reported Gekko japonicus genome assembly (Table 3)
[4]. Comparison of assembly N50s for the leopard gecko
genome with eleven previously published reptile genomes
(Anolis carolinensis [5], Python molurus bivittatus [6],
Ophiophagus hannah [7], Alligator sinensis [8, 9], Alligator
mississippiensis, Gavialis gangeticus, Crocodylus porosus
[10], Chelonia mydas, Pelodiscus sinensis [11], Pogona
vitticeps [12], and Chrysemys picta bellii [13]) further

Fig. 1 Example of a Leopard gecko Eublepharis macularius (image from Tony Gamble)

Table 1 Summary statistics of leopard gecko sequence data derived from paired-end sequencing of seven insert libraries using an
Illumina HiSeq 2000 platform

Library insert
size (bp)

# Lane Read
length (bp)

Raw data High-quality data

Total bases (Gb) Sequencing depth (X) Total bases (Gb) Sequencing depth (X)

170 2 100 60.25 27.03 57.20 25.66

500 2 150 76.08 34.13 59.36 26.63

800 1 150 27.84 12.49 15.90 7.13

2000 3 49 58.04 26.04 34.88 15.65

5000 2 49 33.96 15.24 10.99 4.93

10,000 2 49 29.17 13.09 5.09 2.28

20,000 1 49 17.33 7.78 4.07 1.83

Total 13 302.66 135.78 187.49 84.11

Note: Sequencing depth was calculated based on a genome size of 2.23 Gb. High-quality data were obtained by filtering raw data for low-quality and duplicate
reads and correcting sequencing errors
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confirmed that our results were of comparable or better
quality (Table 4).

Estimation of genome completeness
We evaluated the completeness of the assembly using
CEGMA [14] and BUSCO [15], which quantitatively
assess genome completeness using evolutionarily in-
formed expectations of gene content. CEGMA assess-
ment showed that our assembly captured 225 (91 %)
of the 248 ultra-conserved core eukaryotic genes, of
which 210 (85 %) were complete. BUSCO analysis
showed that 58 and 18 % of the 3023 expected ver-
tebrata genes were identified as complete and frag-
mented, respectively, while 24 % were considered
missing in the assembly. Both assessment methods
showed that our assembly was more complete than
the previously reported Gekko japonicus genome as-
sembly (Tables 5 and 6).

Repeat annotation
We combined a homology-based and de novo method
to identify transposable elements (TEs) and other re-
petitive elements in the leopard gecko genome. Using
the homology-based method, we identified known
TEs using RepeatMasker [16] to search against the
Repbase TE library (RepBase21.01) [17] and RepeatPro-
teinMask within the RepeatMasker package to search
against the TE protein database. In the de novo method,
we first constructed a de novo leopard gecko repeat library
using RepeatModeler (http://www.repeatmasker.org/
RepeatModeler.html, version 1.0.5) and Piler [18], and
the de novo TE library was subsequently used by Repeat-
Masker to annotate repeats in the leopard gecko genome.
Finally, we used TRF [19] to predict tandem repeats,
with the following parameters: Match = 2, Mismatch = 7,

Delta = 7, PM= 80, PI = 10, Minscore = 50. Overall, we
identified a total of 851 Mb of non-redundant, repeti-
tive sequences, accounting for 42 % of the leopard
gecko genome. The most predominant elements were
long interspersed nuclear elements (LINEs), which
accounted for 30 % of all TE sequences and 13 % of
the genome (Table 7).

Gene prediction
We combined homology-based, de novo, and transcriptome-
based methods to predict protein-coding genes in the
leopard gecko genome.
In the homology-based methods, we downloaded

the gene sets of Taeniopygia guttata, Homo sapiens,
Anolis carolinensis, Pelodiscus sinensis and Xenopus
tropicalis from the Ensembl database (release-73). We
first aligned these homologous protein sequences to
the leopard gecko genome assembly using TBLASTN
with an E-value cutoff of 1e-5, and linked the BLAST
hits into candidate gene loci with GenBlastA [20]. We
then extracted genomic sequences of candidate loci,
together with 3 kb flanking sequences, using Gene-
Wise [21] to determine gene models. Finally, we fil-
tered pseudogenes that had only one exon with frame
errors, as these loci were probably derived from
retrotransposition.
In the de novo method, we randomly selected 1000

leopard gecko genes with intact open reading frames
(ORFs) and the highest GeneWise score from the
homology-based gene set to train the Augustus [22]
gene prediction tool with default parameters. Augustus
was then used to perform a de novo gene prediction on
repeat-masked genome sequences. Gene models with
incomplete ORFs and small genes with a protein-
coding length <150 bp were filtered out. Finally, a
BLASTP search of predicted genes was performed
against the SwissProt database [23]. Genes with
matches to SwissProt proteins containing any one of
the following keywords were filtered: transpose, trans-
poson, retro-transposon, retrovirus, retrotransposon,
reverse transcriptase, transposase, and retroviral.
Transcriptome-based gene prediction was then per-

formed using leopard gecko RNA-seq data from liver,
salivary gland, scent gland, and skin tissues obtained
from the NCBI database (accession number SRR629643,
ERR216315, ERR216316, ERR216322, ERR216325,
ERR216304 and ERR216306) [24]. Tophat (v1.3.3) was

Table 2 Statistics of genome size estimation by 17-mer analysis. The genome size was estimated according to the formula: Genome
size = # Kmers/Peak of depth

Genome Kmer length (bp) # Kmers Peak of depth Estimated genome size (bp) Data used (bp)

Eublepharis macularius 17 46,813,180,882 21 2,229,199,089 53,806,135,250

Table 3 Comparison of genome features between Eublepharis
macularius and Gekko japonicus

Genome features Eublepharis macularius Gekko japonicus

Assembled genome size (Gb) 2.02 2.55

Scaffold N50 (kb) 664 685

Contig N50 (kb) 20.0 21.1

Gene Number 24,755 22,487

Repeat content (% of genome) 42.18 48.94
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used to align the RNA-seq reads against the leopard
gecko genome assembly to identify splice junctions, and
cufflinks (v2.2.1) was used to assemble transcripts using
the aligned RNA-seq reads [25].
Finally, the results of homology-, de novo-, and

transcriptome-based analyses were merged to yield a non-
redundant reference gene set based on a priority order of
transcriptome-based evidence > homology-based evidence >
de novo-based evidence. We employed an in-house annota-
tion pipeline to merge the gene data as follows:

(1)A Markov model was estimated with 1000 high-quality
genes, which were previously used to train Augustus,

using the trainGlimmerHMM tool included in the
GlimmerHMM software package [26]. The coding
potential of each transcript assembled from the
transcriptome data was then identified using the
Markov model. Transcripts with complete ORFs
were extracted and multiple isoforms from the
same locus were collapsed by retaining the longest
ORF.

(2)These non-redundant ORFs were then integrated
with homology-based gene models to form the core
gene set using a custom script. If a gene model with
a higher priority overlapped with a model with a
lower priority (overlapping length >100 bp), the
latter was removed. If two gene models with the
same priority overlapped, the one with a longer ORF
was preferred.

(3)Homology-based gene models not supported by
transcriptome-based evidence but supported by

Table 4 Summary statistics of key parameters for 13 reptile genomes

Species Common name Sequencing
technology

Sequence
coverage

Assembly size (Gb) Contig N50 (kb) Scaffold N50 (kb) References

Anolis carolinensis Green anole lizard Sanger 6.0X 1.78 79.9 4033 [5]

Alligator sinensis Chinese alligator NGS 109.0X 2.30 23.4 2188 [8]

Chrysemys picta bellii Western painted turtle Sanger + NGS 18.0X 2.59 11.9 5212 [13]

Chelonia mydas Green sea turtle NGS 82.3X 2.24 20.4 3778 [11]

Pelodiscus sinensis Soft-shell turtle NGS 105.6X 2.21 21.9 3331 [11]

Python molurus bivittatus Burmese python NGS 20.0X 1.44 10.7 208 [6]

Ophiophagus hannah King cobra NGS 28.0X 1.66 4.0 226 [7]

Alligator mississippiensis American alligator NGS 156.0X 2.17 7.0 509 [10]

Gavialis gangeticus Indian gharial NGS 81.0X 2.88 14.2 127 [10]

Crocodylus porosus Saltwater crocodile NGS 74.0X 2.12 32.8 205 [10]

Gekko japonicus Japanese gecko NGS 131.3X 2.55 21.1 685 [4]

Pogona vitticeps Australian dragon lizard NGS 179.1X 1.82 31.3 2290 [12]

Eublepharis macularius Leopard gecko NGS 135.8X 2.02 20.0 664

Table 5 Coverage of core eukaryotic genes (CEGs) in the gecko
genome assessed by CEGMA. All CEGs were divided into four
groups based on their degree of protein sequence
conservation. Group 1 contains the least conserved CEGs and
group 4 contains the most conserved

Eublepharis macularius Gekko japonicus

Proteins Completeness (%) Proteins Completeness (%)

Complete 210 84.68 182 73.39

Group 1 53 80.30 51 77.27

Group 2 49 87.50 44 78.57

Group 3 52 85.25 43 70.49

Group 4 56 86.15 44 67.69

Partial 225 90.73 202 81.45

Group 1 59 89.39 58 87.88

Group 2 52 92.86 47 83.93

Group 3 55 90.16 48 78.69

Group 4 59 90.77 49 75.38

Table 6 Summarized benchmarks in the BUSCO assessment

Eublepharis
macularius

Gekko japonicus

BUSCO benchmark Number Percentage Number Percentage

Total BUSCO groups
searched

3023 3023

Complete single-copy
BUSCOs

1746 57.757 1528 50.546

Complete duplicated
BUSCOs

31 1.025 27 0.893

Fragmented BUSCOs 551 18.227 580 19.186

Missing BUSCOs 726 24.016 915 30.268
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homologous evidence from at least two species were
added to the core gene set.

(4)De novo-based gene models not supported by
homology-based and transcriptome-based
evidence were added to the core gene set where
significant hits (BLASTP E-value <1e-5) for
non-transposon proteins in the SwissProt
database were obtained.

As a result of these steps, a total of 24,755 non-redundant
protein-coding genes were annotated in the leopard
gecko genome assembly.

Functional annotation of protein-coding genes
We assigned names to 93.59 % of all leopard gecko
protein-coding genes by searching against the function
databases TrEMBL and SwissProt [23] using BLASTP
(Table 8). We then searched the leopard gecko protein
sequences against the Kyoto Encyclopaedia of Genes and
Genomes (KEGG) database [27] using BLASTP to iden-
tify molecular pathways that the genes might be
involved in. Protein domains and motifs were annotated
using InterProScan (version 5.16) [28] using seven differ-
ent models (Profilescan, blastprodom, HmmSmart,
HmmPanther, HmmPfam, FPrintScan and Pattern-
Scan). This revealed that 20,958 of the predicted
leopard gecko proteins had conserved functional
motifs. We also obtained 1028 Gene Ontology (GO)
[29] terms that were assigned to 15,873 leopard gecko
proteins from the corresponding InterPro entry.

Availability and requirements

� Project name: Leopard gecko genome annotation
scripts

� Project home page: https://github.com/gigascience/
paper-xiong2016

� Operating systems: Linux
� Programming language: PERL
� Other requirements: none
� License: MIT
� Any restrictions to use by non-academics: none

Additional file

Additional file 1: Frequency distribution of 17-mer analysis. 17-mers are
counted from a subset of paired-end reads from 170 bp and 500 bp
libraries. The peak depth is 21X. The total number of 17-mers present in
this subset is 46,813,180,882. The genome size, estimated by dividing the
total number of 17-mer by the peak depth, is 2.229 Gb. (PDF 179 kb)
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